1,534 research outputs found

    CONDOR: A Hybrid IDS to Offer Improved Intrusion Detection

    Get PDF
    Intrusion Detection Systems are an accepted and very useful option to monitor, and detect malicious activities. However, Intrusion Detection Systems have inherent limitations which lead to false positives and false negatives; we propose that combining signature and anomaly based IDSs should be examined. This paper contrasts signature and anomaly-based IDSs, and critiques some proposals about hybrid IDSs with signature and heuristic capabilities, before considering some of their contributions in order to include them as main features of a new hybrid IDS named CONDOR (COmbined Network intrusion Detection ORientate), which is designed to offer superior pattern analysis and anomaly detection by reducing false positive rates and administrator intervention

    Selective Jamming of LoRaWAN using Commodity Hardware

    Full text link
    Long range, low power networks are rapidly gaining acceptance in the Internet of Things (IoT) due to their ability to economically support long-range sensing and control applications while providing multi-year battery life. LoRa is a key example of this new class of network and is being deployed at large scale in several countries worldwide. As these networks move out of the lab and into the real world, they expose a large cyber-physical attack surface. Securing these networks is therefore both critical and urgent. This paper highlights security issues in LoRa and LoRaWAN that arise due to the choice of a robust but slow modulation type in the protocol. We exploit these issues to develop a suite of practical attacks based around selective jamming. These attacks are conducted and evaluated using commodity hardware. The paper concludes by suggesting a range of countermeasures that can be used to mitigate the attacks.Comment: Mobiquitous 2017, November 7-10, 2017, Melbourne, VIC, Australi

    Detecting TCP SYN Flood Attack in the Cloud

    Get PDF
    In this paper, an approach to protecting virtual machines (VMs) against TCP SYN flood attack in a cloud environment is proposed. An open source cloud platform Eucalyptus is deployed and experimentation is carried out on this setup. We investigate attacks emanating from one VM to another in a multi-tenancy cloud environment. Various scenarios of the attack are executed on a webserver VM. To detect such attacks from a cloud provider’s perspective, a security mechanism involving a packet sniffer, feature extraction process, a classifier and an alerting component is proposed and implemented. We experiment with k-nearest neighbor and artificial neural network for classification of the attack. The dataset obtained from the attacks on the webserver VM is passed through the classifiers. The artificial neural network produced a F1 score of 1 with the test cases implying a 100% detection accuracy of the malicious attack traffic from legitimate traffic. The proposed security mechanism shows promising results in detecting TCP SYN flood attack behaviors in the cloud

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage

    A high throughput Intrusion Detection System (IDS) to enhance the security of data transmission among research centers

    Full text link
    Data breaches and cyberattacks represent a severe problem in higher education institutions and universities that can result in illegal access to sensitive information and data loss. To enhance the security of data transmission, Intrusion Prevention Systems (IPS, i.e., firewalls) and Intrusion Detection Systems (IDS, i.e., packet sniffers) are used to detect potential threats in the exchanged data. IPSs and IDSs are usually designed as software programs running on a server machine. However, when the speed of exchanged data is too high, this solution can become unreliable. In this case, IPSs and IDSs designed on a real hardware platform, such as ASICs and FPGAs, represent a more reliable solution. This paper presents a packet sniffer that was designed using a commercial FPGA development board. The system can support a data throughput of 10 Gbit/s with preliminary results showing that the speed of data transmission can be reliably extended to 100 Gbit/s. The designed system is highly configurable by the user and can enhance the data protection of information transmitted using the Ethernet protocol. It is particularly suited for the security of universities and research centers, where point-to-point network connections are dominant and large amount of sensitive data are shared among different hosts.Comment: 10 pages, 10 figures, 16th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD23), 25-29 September 2023, Siena, Ital

    BotSpine - A Generic Simple Development Platform of Smartphones and Sensors or Robotics

    Get PDF
    The Internet of Things (IoT) emergence leads to an “intelligence” technology revolution in industrial, social, environmental and almost every aspect of life and objectives. Sensor and actuators are heavily employed in industrial production and, under the trend of IoT, smart sensors are in great demand. Smartphones stand out from other computing terminals as a result of their incomparable popularity, mobility and computer comparable computing capability. However, current IoT designs are developed among diverse platforms and systems and are usually specific to applications and patterns. There is no a standardized developing interface between smartphones and sensors/electronics that is facile and rapid for either developers or consumers to connect and control through smartphones. The goal of this thesis is to develop a simple and generic platform interconnecting smartphones and sensors and/or robotics, allowing users to develop, monitor and control all types of sensors, robotics or customer electronics simply over their smartphones through the developed platform. The research is in cooperation with a local company, Environmental Instruments Canada Inc. From the perspective of research and industrial interests, the proposed platform is designed for generally applicable, low cost, low energy, easily programmed, and smartphone based sensor and/or robotic development purposes. I will build a platform interfacing smartphones and sensors including hardware, firmware structures and software application. The platform is named BotSpine and it provides an energy-efficient real-time wireless communication. This thesis also implements BotSpine by redesigning a radon sniffer robot with the developed interface, demonstrated that BotSpine is able to achieve expectations. BotSpine performs a fast and secure connection with smartphones and its command/BASIC program features render controlling and developing robotics and electronics easy and simple

    An adaptive distributed Intrusion detection system architecture using multi agents

    Get PDF
    Intrusion detection systems are used for monitoring the network data, analyze them and find the intrusions if any. The major issues with these systems are the time taken for analysis, transfer of bulk data from one part of the network to another, high false positives and adaptability to the future threats. These issues are addressed here by devising a framework for intrusion detection. Here, various types of co-operating agents are distributed in the network for monitoring, analyzing, detecting and reporting. Analysis and detection agents are the mobile agents which are the primary detection modules for detecting intrusions. Their mobility eliminates the transfer of bulk data for processing. An algorithm named territory is proposed to avoid interference of one analysis agent with another one. A communication layout of the analysis and detection module with other modules is depicted. The inter-agent communication reduces the false positives significantly. It also facilitates the identification of distributed types of attacks. The co-ordinator agents log various events and summarize the activities in its network. It also communicates with co-ordinator agents of other networks. The system is highly scalable by increasing the number of various agents if needed. Centralized processing is avoided here to evade single point of failure. We created a prototype and the experiments done gave very promising results showing the effectiveness of the system

    Sonification of Network Traffic Flow for Monitoring and Situational Awareness

    Get PDF
    Maintaining situational awareness of what is happening within a network is challenging, not least because the behaviour happens within computers and communications networks, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation is widely used to present information about the dynamics of network traffic dynamics. Although it provides operators with an overall view and specific information about particular traffic or attacks on the network, it often fails to represent the events in an understandable way. Visualisations require visual attention and so are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Situational awareness is critical and essential for decision-making in the domain of computer network monitoring where it is vital to be able to identify and recognize network environment behaviours.Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system to be used in the monitoring of computer networks to support the situational awareness of network administrators. SoNSTAR provides an auditory representation of all the TCP/IP protocol traffic within a network based on the different traffic flows between between network hosts. SoNSTAR raises situational awareness levels for computer network defence by allowing operators to achieve better understanding and performance while imposing less workload compared to visual techniques. SoNSTAR identifies the features of network traffic flows by inspecting the status flags of TCP/IP packet headers and mapping traffic events to recorded sounds to generate a soundscape representing the real-time status of the network traffic environment. Listening to the soundscape allows the administrator to recognise anomalous behaviour quickly and without having to continuously watch a computer screen.Comment: 17 pages, 7 figures plus supplemental material in Github repositor
    • …
    corecore