829 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems

    Get PDF
    Si, H., Li, W., Wang, Q., Cao, H., Bação, F., & Sun, C. (2023). A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems. PeerJ Computer Science, (November 2023), 1-36. https://doi.org/10.7717/peerj-cs.1678, https://doi.org/10.7717/peerj-cs.1678/supp-1, https://doi.org/10.7717/peerj-cs.1678/supp-2---This work was supported by the Henan Province Key Science-technology Research Project under Grant No. 232102520006 and 232102210122, the Key Research Project of Henan Provincial Higher Education Institution under Grant No. 23A520005, and the Henan Province Major Public Welfare Projects under Grant No. 201300210300. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.In the intelligent transportation system (ITS), secure and efficient data communication among vehicles, road testing equipment, computing nodes, and transportation agencies is important for building a smart city-integrated transportation system. However, the traditional centralized processing approach may face threats in terms of data leakage and trust. The use of distributed, tamper-proof blockchain technology can improve the decentralized storage and security of data in the ITS network. However, the cross-trust domain devices, terminals, and transportation agencies in the heterogeneous blockchain network of the ITS still face great challenges in trusted data communication and interoperability. In this article, we propose a heterogeneous cross-chain interaction mechanism based on relay nodes and identity encryption to solve the problem of data cross-domain interaction between devices and agencies in the ITS. First, we propose the ITS cross-chain communication framework and improve the cross-chain interaction model. The relay nodes are interconnected through libP2P to form a relay node chain, which is used for cross-chain information verification and transmission. Secondly, we propose a relay node secure access scheme based on identity-based encryption to provide reliable identity authentication for relay nodes. Finally, we build a standard cross-chain communication protocol and cross-chain transaction lifecycle for this mechanism. We use Hyperledger Fabric and FISCO BCOS blockchain to design and implement this solution, and verify the feasibility of this cross-chain interaction mechanism. The experimental results show that the mechanism can achieve a stable data cross-chain read throughput of 2,000 transactions per second, which can meet the requirements of secure and efficient cross-chain communication and interaction among heterogeneous blockchains in the ITS, and has high application value.publishersversionpublishe

    Big data analytics tools for improving the decision-making process in agrifood supply chain

    Get PDF
    Introduzione: Nell'interesse di garantire una sicurezza alimentare a lungo termine di fronte a circostanze mutevoli, è necessario comprendere e considerare gli aspetti ambientali, sociali ed economici del processo di produzione. Inoltre, a causa della globalizzazione, sono stati sollevati i problemi delle lunghe filiere agroalimentari, l'asimmetria informativa, la contraffazione, la difficoltà di tracciare e rintracciare l'origine dei prodotti e le numerose questioni correlate quali il benessere dei consumatori e i costi sanitari. Le tecnologie emergenti guidano verso il raggiungimento di nuovi approcci socioeconomici in quanto consentono al governo e ai singoli produttori agricoli di raccogliere ed analizzare una quantità sempre crescente di dati ambientali, agronomici, logistici e danno la possibilità ai consumatori ed alle autorità di controllo della qualità di accedere a tutte le informazioni necessarie in breve tempo e facilmente. Obiettivo: L'oggetto della ricerca riguarda lo studio delle modalità di miglioramento del processo produttivo attraverso la riduzione dell'asimmetria informativa, rendendola disponibile alle parti interessate in un tempo ragionevole, analizzando i dati sui processi produttivi, considerando l'impatto ambientale della produzione in termini di ecologia, economia, sicurezza alimentare e qualità di cibo, costruendo delle opportunità per le parti interessate nel prendere decisioni informate, oltre che semplificare il controllo della qualità, della contraffazione e delle frodi. Pertanto, l'obiettivo di questo lavoro è quello di studiare le attuali catene di approvvigionamento, identificare le loro debolezze e necessità, analizzare le tecnologie emergenti, le loro caratteristiche e gli impatti sulle catene di approvvigionamento e fornire utili raccomandazioni all'industria, ai governi e ai policy maker.Introduction: In the interest of ensuring long-term food security and safety in the face of changing circumstances, it is interesting and necessary to understand and to take into consideration the environmental, social and economic aspects of food and beverage production in relation to the consumers’ demand. Besides, due to the globalization, the problems of long supply chains, information asymmetry, counterfeiting, difficulty for tracing and tracking back the origin of the products and numerous related issues have been raised such as consumers’ well-being and healthcare costs. Emerging technologies drive to achieve new socio-economic approaches as they enable government and individual agricultural producers to collect and analyze an ever-increasing amount of environmental, agronomic, logistic data, and they give the possibility to the consumers and quality control authorities to get access to all necessary information in a short notice and easily. Aim: The object of the research essentially concerns the study of the ways for improving the production process through reducing the information asymmetry, making it available for interested parties in a reasonable time, analyzing the data about production processes considering the environmental impact of production in terms of ecology, economy, food safety and food quality and build the opportunity for stakeholders to make informed decisions, as well as simplifying the control of the quality, counterfeiting and fraud. Therefore, the aim of this work is to study current supply chains, to identify their weaknesses and necessities, to investigate the emerging technologies, their characteristics and the impacts on supply chains, and to provide with the useful recommendations the industry, governments and policymakers

    Secure and Transparent Supply Chain Management using Blockchain and IoT

    Get PDF
    Blockchain technology has emerged as a disruptive force across various industries, and its integration with the Internet of Things (IoT) has unlocked new avenues for supply chain management. The conventional supply chain systems often encounter challenges related to privacy, security, and data integrity. In contrast, blockchain's decentralized and tamper-proof nature ensures a secure, auditable, and transparent record of product movement within the supply chain. By leveraging the immutable properties of blockchain, the system enhances product traceability, authenticity, and accountability while significantly reducing operational costs. IoT devices are vulnerable to attack as due to low processing power, storage limitations etc.  Blockchain integrated with IoT provides a solution faced by the several industries. Blockchains and smart contracts are technology that has gained massive attention. The integration of blockchain addresses these shortcomings by providing robust data security and integrity, minimizing the risk of unauthorized access or alteration. This paper presents a system that helps the industrialist to have an access to agricultural data and supply of crops data to farmer. As industries continue to embrace digitization and connectivity, the presented system offers a significant step towards a more streamlined and secure future for agricultural information sharing. This system will be effective for the supply chain management for the trusted delivery

    FlexiChain 2.0: NodeChain Assisting Integrated Decentralized Vault for Effective Data Authentication and Device Integrity in Complex Cyber-Physical Systems

    Full text link
    Distributed Ledger Technology (DLT) has been introduced using the most common consensus algorithm either for an electronic cash system or a decentralized programmable assets platform which provides general services. Most established reliable networks are unsuitable for all applications such as smart cities applications, and, in particular, Internet of Things (IoT) and Cyber Physical Systems (CPS) applications. The purpose of this paper is to provide a suitable DLT for IoT and CPS that could satisfy their requirements. The proposed work has been designed based on the requirements of Cyber Physical Systems. FlexiChain is proposed as a layer zero network that could be formed from independent blockchains. Also, NodeChain has been introduced to be a distributed (Unique ID) UID aggregation vault to secure all nodes' UIDs. Moreover, NodeChain is proposed to serve mainly FlexiChain for all node security requirements. NodeChain targets the security and integrity of each node. Also, the linked UIDs create a chain of narration that keeps track not merely for assets but also for who authenticated the assets. The security results present a higher resistance against four types of attacks. Furthermore, the strength of the network is presented from the early stages compared to blockchain and central authority. FlexiChain technology has been introduced to be a layer zero network for all CPS decentralized applications taking into accounts their requirements. FlexiChain relies on lightweight processing mechanisms and creates other methods to increase security
    corecore