26,066 research outputs found

    Complex Event Processing in EPC Sensor Network Middleware for Both RFID and WSN

    Full text link
    In an integration system of RFID and wireless sensor network (WSN), RFID is used to identify objects while WSN can provide context environment information of these objects. Thus, it increases system intelligent in pervasive computing. We propose the EPC Sensor Network (ESN) architecture as an integration system of RFID and WSN. This ESN architecture is based on EPCglobal architecture, the de facto international standard for RFID. The core of ESN is the middleware part which is also implemented in our work. In this paper, complex event processing (CEP) technology is used in our ESN middleware which can handle large volume of events from distributed RFID and sensor readers in real time. Through filtering, grouping, aggregating and constructing complex event, ESN middleware provides a more meaningful report for the clients and increases system automation

    Smart Vehicular Traffic Management System using RFID Technology

    Get PDF
    Public places are often characterized with incessant traffic congestion, especially during special occasions and events, as large number of automobiles attempt to use the same parking lot concurrently. This usually result in confusion and dispute, auto crashes, waste of time and resources, and release of more carbon into the ecosystem. Radio Frequency Identification (RFID) technology offers effective solution for distant object identification without requiring a line of sight. In this paper, the authors developed an intelligent, cost-effective, and eco-friendly park management system for scalable traffic control using RFID and Solar photovoltaic (SPV) technologies. Pre-registered and visiting vehicles are assigned tags to access designated parking lots. However, large-scale implementation of the technology for intelligent park management requires a stable power supply with no threat to our ecosystem. SPV-powered UHF RFID readers transmit vehicle information via wireless data links to a host system application at the SPV-powered central database management system for further processing. This system will ensure effective traffic control during peak periods in order to avoid crashes, save time and resources, and as well save our plane

    RFID Based Automatic Shopping Cart

    Get PDF
    Large grocery stores are nowadays used by millions of people for the acquisition of an enlarging number of products. Product acquisition represents a complex process that comprises time spent in corridors, product location and checkout queues. On the other hand, it is becoming increasingly difficult for retailers to keep their clients loyal and to predict their needs due to the influence of competition and the lack of tools that discriminate consumption patterns. In this article it is presented the proposal of an architecture and solution of an innovative system for the acquisition of products in grocery stores (Intelligent Cart). The Intelligent Cart explores emerging mobile technologies and automatic identification technologies (such as RFID) as a way to improve the quality of services provided by retailers and to augment the consumer value thus allowing to save time and money. Keywords: Automatic Product Identification; Electronic Services; Grocery Stores, RFID, Intelligent car

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Security Enhancement Mechanism Based on Contextual Authentication and Role Analysis for 2G-RFID Systems

    Get PDF
    The traditional Radio Frequency Identification (RFID) system, in which the information maintained in tags is passive and static, has no intelligent decision-making ability to suit application and environment dynamics. The Second-Generation RFID (2G-RFID) system, referred as 2G-RFID-sys, is an evolution of the traditional RFID system to ensure better quality of service in future networks. Due to the openness of the active mobile codes in the 2G-RFID system, the realization of conveying intelligence brings a critical issue: how can we make sure the backend system will interpret and execute mobile codes in the right way without misuse so as to avoid malicious attacks? To address this issue, this paper expands the concept of Role-Based Access Control (RBAC) by introducing context-aware computing, and then designs a secure middleware for backend systems, named Two-Level Security Enhancement Mechanism or 2L-SEM, in order to ensure the usability and validity of the mobile code through contextual authentication and role analysis. According to the given contextual restrictions, 2L-SEM can filtrate the illegal and invalid mobile codes contained in tags. Finally, a reference architecture and its typical application are given to illustrate the implementation of 2L-SEM in a 2G-RFID system, along with the simulation results to evaluate how the proposed mechanism can guarantee secure execution of mobile codes for the system

    High dimensionality carrierless amplitude phase modulation technique for radio over fiber system

    Get PDF
    Advanced modulation formats such as carrierless amplitude phase (CAP) modulation technique is one of the solutions to increase flexibility and high bit rates to support multi-level and multi-dimensional modulations with the absence of sinusoidal carrier. Recent work are focussing on the 2D CAP-64 QAM Radio-over-Fiber (RoF) system but no extension of higher dimensions is reported. This thesis expands the area of CAP modulation technique and RoF system. The work described in this thesis is devoted to the investigation of 1.25 GSa/s sampling rate for multi-level and multi-dimensional CAP in point-to-point (P2P) and RoF system at 3 km single-mode fiber (SMF). Another advanced modulation format which is known as discrete multitone (DMT) is compared with CAP modulation in order to observe the performance in different modulation schemes. The 4QAM-DMT and 16QAM-DMT at different number of subcarriers are carried out in this propagation. Based on the results, the transmission performance in terms of BER and received optical power for RoF transmission are degraded to almost 3 dB when comparing to 3 km SMF transmission. These are caused by the wireless power loss and impairment effects. The bit rate and spectral efficiency can be increased with the increasing number of levels, and may decreased once the number of dimensions is increased due to the higher up-sampling factor. However, the additional dimensions can be used to support multiple service applications. Therefore, it can be concluded that CAP has better performance as compared to DMT in terms of higher spectral efficiency and data rate. To conclude, the results presented in this thesis exhibit high feasibility of CAP modulation in the increasing number of dimensions and levels. Thus, CAP has the potential to be utilized in multiple service allocations for different number of users
    • 

    corecore