14,146 research outputs found

    The State of the System and Steps Toward Resilience of Disturbancedependent Oak Forests

    Get PDF
    Current ecological, economic, and social conditions present unique challenges to natural resource managers seeking to maintain the resilience of disturbance-dependent ecosystems, such as oak (Quercus spp.) forests. Oak-dominated ecosystems throughout the U.S. have historically been perpetuated through periodic disturbance, such as fire, but more recently show decline given shifting disturbance regimes associated with human land management decisions. We characterized the state of the social-ecological oak forest ecosystem in the midwestern U.S. through the perspectives of 32 natural resource professionals. Data from interviews with these change agents provided an integrative understanding of key system components, cross-scale interactions, dependencies, and feedbacks. Foremost, private landowner management decisions figured prominently in influencing oak regeneration success and were directly and indirectly shaped by a suite of interdependent ecological, e.g., deer herbivory, invasive shrub occurrence; economic, e.g., the cost of oak regeneration practices, the stumpage value of maple as compared to oak; and social forces, e.g., forestland parcelization, and personal relationships. Interviewees envisioned, and often preferred, a decline in oak dominance throughout the region, pointing to issues related to general landowner unwillingness to restore oak, the current trajectory of forest change, the threat of forest loss due to parcelization and housing development, and a combination of ecological and social factors that decrease the economic feasibility of restoration efforts. However, a decline in oak dominance may result in ecological communities that have no compositional equivalent on record and may not offer a desirable endpoint. Increasing social support offers the potential to enhance system capacity to manage for oak

    Patterns and drivers of recent disturbances across the temperate forest biome

    Get PDF
    Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.A.S. and R.S. acknowledge support from the Austrian Science Fund (FWF) through START grant Y895-B25. C.S. acknowledges funding from the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF) and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement Nr. 605728 (P.R.I.M.E.—Postdoctoral Researchers International Mobility Experience). T. D. acknowledges funding from the Fonds institutionnel de recherche de l’Universitédu Quebec en Abitibi-Te ́ miscamingue, the Natural Sciences and Engineering Research ́ Council of Canada (NSERC), Tembec, and EACOM Timber Corporation. Á.G.G. was supported by FONDECYT 11150835. S.J.H. and T.T.V. acknowledge NSF Award 1262687. A.H. was partially supported by NSF (award #1738104). D.K. acknowledges support from the US NSF. D.L. was supported by an Australian Research Council Laureate Fellowship. A.S.M. was supported by the Environment Research and Technology Development Fund (S-14) of the Japanese Ministry of the Environment and by the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (15KK0022). G.L.W.P. acknowledges support from a Royal Society of New Zealand Marsden Fund grant. S.L.S. acknowledges funds from the US Joint Fire Sciences Program (project number 14-1-06-22) and UC ANR competitive grants. M.S. and T.H. acknowledges support from the institutional project MSMT CZ.02.1.01/0.0/0.0/16_019/ 0000803. M.G.T. acknowledges funding from the University of Wisconsin-Madison Vilas Trust and the US Joint Fire Science Program (project numbers 09-1-06-3, 12-3-01-3, and 16-3-01-4). The study used data from the TRY initiative on plant traits (http://www.trydb.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Boenisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by Future Earth/bioDISCOVERY and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzi

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Natural disturbance regimes as a guide for sustainable forest management in Europe

    Get PDF
    Dette er den aksepterte versjonen av en artikkel publisert i Ecological Applications. Den blir tilgjengelig fra og med 28.03.2023 etter en embargoperiode pĂ„ 12 mĂ„neder. Du finner den publiserte artikkelen her: https://doi.org/10.1002/eap.2596. / This is the postprint version of the article published in Ecological Applications. It will be available 28.03.2023 after an embargo period of 12 months.You can find the published article here: https://doi.org/10.1002/eap.2596.In Europe, forest management has controlled forest dynamics to sustain commodity production over multiple centuries. Yet over-regulation for growth and yield diminishes resilience to environmental stress as well as threatens biodiversity, leading to increasing forest susceptibility to an array of disturbances. These trends have stimulated interest in alternative management systems, including natural dynamics silviculture (NDS). NDS aims to emulate natural disturbance dynamics at stand and landscape scales through silvicultural manipulations of forest structure and landscape patterns. We adapted a “Comparability Index” (CI) to assess convergence/divergence between natural disturbances and forest management effects. We extended the original CI concept based on disturbance size and frequency by adding the residual structure of canopy trees after a disturbance as a third dimension. We populated the model by compiling data on natural disturbance dynamics and management from 13 countries in Europe, covering four major forest types (i.e., spruce, beech, oak, and pine-dominated forests). We found that natural disturbances are highly variable in size, frequency, and residual structure, but European forest management fails to encompass this complexity. Silviculture in Europe is skewed toward even-aged systems, used predominately (72.9% of management) across the countries assessed. The residual structure proved crucial in the comparison of natural disturbances and silvicultural systems. CI indicated the highest congruence between uneven-aged silvicultural systems and key natural disturbance attributes. Even so, uneven-aged practices emulated only a portion of the complexity associated with natural disturbance effects. The remaining silvicultural systems perform poorly in terms of retention compared to tree survivorship after natural disturbances. We suggest that NDS can enrich Europe’s portfolio of management systems, for example where wood production is not the primary objective. NDS is especially relevant to forests managed for habitat quality, risk reduction, and a variety of ecosystem services. We suggest a holistic approach integrating NDS with more conventional practices.acceptedVersio

    How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Get PDF
    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies

    Participatory Geographic Information Systems as an Organizational Platform for the Integration of Traditional and Scientific Knowledge in Contemporary Fire and Fuels Management

    Get PDF
    Traditional knowledge about fire and its effects held by indigenous people, who are connected to specific landscapes, holds promise for informing contemporary fire and fuels management strategies and augmenting knowledge and information derived from western science. In practice, however, inadequate means to organize and communicate this traditional knowledge with scientists and managers can limit its consideration in decisions, requiring novel approaches to interdisciplinary and cross-cultural communication and collaboration. We propose that Participatory Geographic Information Systems (PGIS) is one platform for the assemblage and communication of traditional knowledge vital to fire and fuels management, while preserving linkages to broader cultural contexts. We provide summaries of four preliminary case studies in the Intermountain West of North America to illustrate different potential applications of a PGIS tool in this context and describe some remaining challenges. Management and Policy Implications: Participatory Geographic Information Systems (PGIS) can offer a powerful approach for enhancing current decisionmaking by allowing for the integration of traditional and scientific knowledge systems with spatial environmental data in an interactive participatory process. Integrated data sets can allow traditional and scientific knowledge experts to share, explore, manage, analyze, and interpret multidimensional data in a common spatial context to develop more informed management decisions. Such combined data sets could provide a more comprehensive assessment of fire-related ecological change than is currently used in decisionmaking and enhance inclusion of effects on local resource utility values and areas of cultural significance. The use of a PGIS interface creates opportunities for traditional knowledge holders to share information and potential prescriptions while maintaining confidentiality. Knowledge integration efforts using PGIS as an organizational tool would help to bridge the communication gap that commonly exists between scientists, managers, and traditional knowledge holders as ecosystems continue to be altered through processes of land management and climate change
    • 

    corecore