659 research outputs found

    Onboard multichannel demultiplexer/demodulator

    Get PDF
    An investigation performed for NASA LeRC by COMSAT Labs, of a digitally implemented on-board demultiplexer/demodulator able to process a mix of uplink carriers of differing bandwidths and center frequencies and programmable in orbit to accommodate variations in traffic flow is reported. The processor accepts high speed samples of the signal carried in a wideband satellite transponder channel, processes these as a composite to determine the signal spectrum, filters the result into individual channels that carry modulated carriers and demodulate these to recover their digital baseband content. The processor is implemented by using forward and inverse pipeline Fast Fourier Transformation techniques. The recovered carriers are then demodulated using a single digitally implemented demodulator that processes all of the modulated carriers. The effort has determined the feasibility of the concept with multiple TDMA carriers, identified critical path technologies, and assessed the potential of developing these technologies to a level capable of supporting a practical, cost effective on-board implementation. The result is a flexible, high speed, digitally implemented Fast Fourier Transform (FFT) bulk demultiplexer/demodulator

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Multichannel demultiplexer-demodulator

    Get PDF
    One of the critical satellite technologies in a meshed VSAT (very small aperture terminal) satellite communication networks utilizing FDMA (frequency division multiple access) uplinks is a multichannel demultiplexer/demodulator (MCDD). TRW Electronic Systems Group developed a proof-of-concept (POC) MCDD using advanced digital technologies. This POC model demonstrates the capability of demultiplexing and demodulating multiple low to medium data rate FDMA uplinks with potential for expansion to demultiplexing and demodulating hundreds to thousands of narrowband uplinks. The TRW approach uses baseband sampling followed by successive wideband and narrowband channelizers with each channelizer feeding into a multirate, time-shared demodulator. A full-scale MCDD would consist of an 8 bit A/D sampling at 92.16 MHz, four wideband channelizers capable of demultiplexing eight wideband channels, thirty-two narrowband channelizers capable of demultiplexing one wideband signal into 32 narrowband channels, and thirty-two multirate demodulators. The POC model consists of an 8 bit A/D sampling at 23.04 MHz, one wideband channelizer, 16 narrowband channelizers, and three multirate demodulators. The implementation loss of the wideband and narrowband channels is 0.3dB and 0.75dB at 10(exp -7) E(sub b)/N(sub o) respectively

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    Slocalization: Sub-{\mu}W Ultra Wideband Backscatter Localization

    Full text link
    Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.Comment: Published at the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN'18

    Iterative turbo beamforming for OFDM based hybrid terrestrial-satellite mobile system

    Get PDF
    In the context of orthogonal frequency division multiplexing (OFDM)-based systems, pilot-based beamforming (BF) exhibits a high degree of sensitivity to the pilot sub-carriers. Increasing the number of reference pilots significantly improves BF performance as well as system performance. However, this increase comes at the cost of data throughput, which inevitably shrinks due to transmission of additional pilots. Hence an approach where reference signals available to the BF process can be increased without transmitting additional pilots can exhibit superior system performance without compromising throughput. Thus, the authors present a novel three-stage iterative turbo beamforming (ITBF) algorithm for an OFDM-based hybrid terrestrial-satellite mobile system, which utilises both pilots and data to perform interference mitigation. Data sub-carriers are utilised as virtual reference signals in the BF process. Results show that when compared to non-iterative conventional BF, the proposed ITBF exhibits bit error rate gain of up to 2.5 dB with only one iteration

    Sub-Nyquist Wideband Spectrum Sensing and Sharing

    Get PDF
    PhDThe rising popularity of wireless services resulting in spectrum shortage has motivated dynamic spectrum sharing to facilitate e cient usage of the underutilized spectrum. Wideband spectrum sensing is a critical functionality to enable dynamic spectrum access by enhancing the opportunities of exploring spectral holes, but entails a major implemen- tation challenge in compact commodity radios that have limited energy and computation capabilities. The sampling rates speci ed by the Shannon-Nyquist theorem impose great challenges both on the acquisition hardware and the subsequent storage and digital sig- nal processors. Sub-Nyquist sampling was thus motivated to sample wideband signals at rates far lower than the Nyquist rate, while still retaining the essential information in the underlying signals. This thesis proposes several algorithms for invoking sub-Nyquist sampling in wideband spectrum sensing. Speci cally, a sub-Nyquist wideband spectrum sensing algorithm is proposed that achieves wideband sensing independent of signal sparsity without sampling at full bandwidth by using the low-speed analog-to-digital converters based on sparse Fast Fourier Transform. To lower signal spectrum sparsity while maintaining the channel state information, the received signal is pre-processed through a proposed permutation and ltering algorithm. Additionally, a low-complexity sub-Nyquist wideband spectrum sensing scheme is proposed that locates occupied channels blindly by recovering the sig- nal support, based on the jointly sparse nature of multiband signals. Exploiting the common signal support shared among multiple secondary users, an e cient coopera- tive spectrum sensing scheme is developed, in which the energy consumption on signal acquisition, processing, and transmission is reduced with the detection performance guar- antee. To further reduce the computation complexity of wideband spectrum sensing, a hybrid framework of sub-Nyquist wideband spectrum sensing with geolocation database is explored. Prior channel information from geolocation database is utilized in the sens- ing process to reduce the processing requirements on the sensor nodes. The models of the proposed algorithms are derived and veri ed by numerical analyses and tested on both real-world and simulated TV white space signals
    corecore