437 research outputs found

    Failure Diagnosis and Prognosis of Safety Critical Systems: Applications in Aerospace Industries

    Get PDF
    Many safety-critical systems such as aircraft, space crafts, and large power plants are required to operate in a reliable and efficient working condition without any performance degradation. As a result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems. FDP systems attempt to use historical and current data of a system, which are collected from various measurements to detect faults, diagnose the types of possible failures, predict and manage failures in advance. This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some challenging issues from the FDP are investigated. This research work consists of three general directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based on data-driven and model-based approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In this regard, two dierent methods are developed. A modular FDP method based on a divide and conquer strategy is presented for the MFS system. The modular structure contains three components:1) fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit identifies types of faults based on an integration of neural network (NN) method and discrete wavelet transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian method. In another work, an innovative data-driven FDP method is developed for hydro-control valve systems. The idea is to use redundancy in multi-sensor data information and enhance the performance of the FDP system. Therefore, a combination of a feature selection method and support vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for forecasting RUL. Model-based methods employ high-delity physics-based model of a system for prognosis task. In this thesis, a novel model-based approach based on an integrated extended Kalman lter (EKF) and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual estimation method using EKF is performed to capture the progress of the failure. Later, a transformation is utilized to obtain a new measure to estimate the degradation path (DP). Moreover, the recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure is utilized to assess the performance of the proposed methods

    Modeling of Failure Prediction Bayesian Network with Divide-and-Conquer Principle

    Get PDF
    For system failure prediction, automatically modeling from historical failure dataset is one of the challenges in practical engineering fields. In this paper, an effective algorithm is proposed to build the failure prediction Bayesian network (FPBN) model with data mining technology. First, the conception of FPBN is introduced to describe the state of components and system and the cause-effect relationships among them. The types of network nodes, the directions of network edges, and the conditional probability distributions (CPDs) of nodes in FPBN are discussed in detail. According to the characteristics of nodes and edges in FPBN, a divide-and-conquer principle based algorithm (FPBN-DC) is introduced to build the best FPBN network structures of different types of nodes separately. Then, the CPDs of nodes in FPBN are calculated by the maximum likelihood estimation method based on the built network. Finally, a simulation study of a helicopter convertor model is carried out to demonstrate the application of FPBN-DC. According to the simulations results, the FPBN-DC algorithm can get better fitness value with the lower number of iterations, which verified its effectiveness and efficiency compared with traditional algorithm

    Condition Monitoring of Wind Turbines Using Intelligent Machine Learning Techniques

    Get PDF
    Wind Turbine condition monitoring can detect anomalies in turbine performance which have the potential to result in unexpected failure and financial loss. This study examines common Supervisory Control And Data Acquisition (SCADA) data over a period of 20 months for 21 pitch regulated 2.3 MW turbines and is presented in three manuscripts. First, power curve monitoring is targeted applying various types of Artificial Neural Networks to increase modeling accuracy. It is shown how the proposed method can significantly improve network reliability compared with existing models. Then, an advance technique is utilized to create a smoother dataset for network training followed by establishing dynamic ANFIS network. At this stage, designed network aims to predict power generation in future hours. Finally, a recursive principal component analysis is performed to extract significant features to be used as input parameters of the network. A novel fusion technique is then employed to build an advanced model to make predictions of turbines performance with favorably low errors

    Cyber-Enabled Product Lifecycle Management: A Multi-Agent Framework

    Get PDF
    Trouble free use of a product and its associated services for a specified minimum period of time is a major factor to win the customer\u27s trust in the product. Rapid and easy serviceability to maintain its functionalities plays a key role in achieving this goal. However, the sustainability of such a model cannot be promised unless the current health status of the product is monitored and condition-based maintenance is exercised. Internet of Things (IoT), an important connectivity paradigm of recent times, which connects physical objects to the internet for real-time information exchange and execution of physical actions via wired/wireless protocols. While the literature is full of various feasibility and viability studies focusing on architecture, design, and model development aspects, there is limited work addressing an IoT-based health monitoring of systems having high collateral damage. This motivated the research to develop a multi-agent framework for monitoring the performance and predicting impending failure to prevent unscheduled maintenance and downtime over internet, referred to as for cyber-enabled product lifecycle management (C-PLM). The framework incorporates a number of autonomous agents, such as hard agent, soft agent, and wave agent, to establish network connectivity to collect and exchange real-time health information for prognostics and health management (PHM). The proposed framework will help manufacturers not only to resolve the warranty failure issues more efficiently and economically but also improve their corporate image. The framework further leads to efficient handling of warranty failure issues and reduces the chances of future failure, i.e., offering durable products. From the sustainability point of view, this framework also addresses the reusability of the parts that still have a significant value using the prognostics and health data. Finally, multi-agent implementation of the proposed approach using a power substations for IoT-based C-PLM is included to show is efficacy

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Continuous Maintenance System for optimal scheduling based on real-time machine monitoring

    Get PDF
    Nowadays, the maintenance activities are the ones that most draw the attention of companies due to the increased costs of sudden machines stop, and consequently, stop the production processes. These stops are mostly caused by wear-out of its components that lead to machine breakdown and a close monitoring of the manufacturing processes need to be made. Based on this, and to increase the production line efficiency, there's a need to continuously monitor the machines' performance, and together with all the historical maintenance data, create strategies to minimize the maintenance phases and costs. These strategies may lie in the prediction of a suitable time periods to perform maintenance operations, a based on that, group a set of machines together to perform maintenance activities between day-off and day-on shifts. This represents a difficulty mainly because the increased complexity of scheduling and planning activities of a production line, being necessary to minimize the impact of maintenance activities based on failure prediction in all the already existing plan

    Maintenance models applied to wind turbines. A comprehensive overview

    Get PDF
    Producción CientíficaWind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models

    An overview of artificial intelligence applications for power electronics

    Get PDF
    • …
    corecore