41 research outputs found

    A real-time interpolator for parametric curves

    Get PDF
    Driven by the ever increasing need for the high-speed high-accuracy machining of freeform surfaces, the interpolators for parametric curves become highly desirable, as they can eliminate the feedrate and acceleration fluctuation due to the discontinuity in the first derivatives along the linear tool path. The interpolation for parametric curves is essentially an optimization problem, and it is extremely difficult to get the time-optimal solution. This paper presents a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations, meanwhile, the feedrate is maintained as high as possible with minimum fluctuation. The lookahead length is dynamically adjusted to minimize the computation load. And the numerical integration error is considered during the lookahead calculation. Two typical parametric curves are selected for both numerical simulation and experimental validation, a cubic phase plate freeform surface is also machined. The numerical simulation is performed using the software (open access information is in the Acknowledgment section) that implements the proposed RTIPC, the results demonstrate the effectiveness of the RTIPC. The real-time performance of the RTIPC is tested on the in-house developed controller, which shows satisfactory efficiency. Finally, machining trials are carried out in comparison with the industrial standard linear interpolator and the state-of-the-art Position-Velocity-Time (PVT) interpolator, the results show the significant advantages of the RTIPC in coding, productivity and motion smoothness

    Novel control approaches for the next generation computer numerical control (CNC) system for hybrid micro-machines

    Get PDF
    It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section.It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section

    Feedrate planning for machining with industrial six-axis robots

    Get PDF
    The authors want to thank Stäubli for providing the necessary information of the controller, Dynalog for its contribution to the experimental validations and X. Helle for its material contributions.Nowadays, the adaptation of industrial robots to carry out high-speed machining operations is strongly required by the manufacturing industry. This new technology machining process demands the improvement of the overall performances of robots to achieve an accuracy level close to that realized by machine-tools. This paper presents a method of trajectory planning adapted for continuous machining by robot. The methodology used is based on a parametric interpolation of the geometry in the operational space. FIR filters properties are exploited to generate the tool feedrate with limited jerk. This planning method is validated experimentally on an industrial robot

    Influence of interpolation type in high-speed machining (HSM)

    Get PDF
    The recourse to the high-speed machining for the manufacture of warped shapes imposes an evolution towards a very high technicality of the CAM methods and of the machining operation execution. Due to its own characteristics, the high-speed machining (HSM) implies the use of new machining interpolations, in such a way that it assures the continuity of advances in the best way possible. Among these interpolations, we mention the polynomial interpolation. In this article, we propose a complete study of the interpolation type influence on the HSM machine dynamic behavior and also on the generated errors. For this, we have measured the feed rate of the cutting tool path for each type. Then, in terms of accuracy, we have measured the errors. In order to validate our approach, we have compared the simulated results to the experimental ones

    Real-time control of a KEOPS-DELTA parallel kinematics machine using LinuxCNC and ETHERCAT

    Get PDF
    This paper presents a laboratory stand for investigating trajectory optimization algorithms for non-cartesian numerically controlled machines. The stand consists of a Delta machine in KEOPS configuration with linear motors controlled by high performance servo-drives. The machine is controlled by real-time control system with LinuxCNC software. The control is performed via real-time communication bus EtherCAT. The paper also describes the extension of the LinuxCNC control system with NURBS interpolaion and s-curve feedrate profiling. Also research to be performed on the machine is discussed concerning development of trajectory optimization algorithms for parallel kinematics machines.U ovom radu je predstavljena laboratorijska postavka za razvoj algoritama optimizacije trajektorije numerički upravljanih mašina alatki sa spegnutim osama. Laboratorijsku postavku čine DELTA mehanizam u KEOPS konfiguraciji sa linearnim osnaženim osama pogonjenih servo pogonima visokih performansi. Upravljanje mašinom je bazirano na LinuxCNC softverskom sistemu. Komunikacija pri upravljanju se vrši u realnom vremenu preko EtherCAT-a. U radu je takođe opisano proširenje LinuxCNC upravljačkog sistema sa NURBS interpolacijom i profilisanjem brzine pomoćnog kretanja pomoću s-krive. Dalja istraživanja će se odnositi na razvoj algoritama optimizacije trajektorije za mašine alatke sa paralelnom kinematikom

    Real-time control of a KEOPS-DELTA parallel kinematics machine using LinuxCNC and ETHERCAT

    Get PDF
    This paper presents a laboratory stand for investigating trajectory optimization algorithms for non-cartesian numerically controlled machines. The stand consists of a Delta machine in KEOPS configuration with linear motors controlled by high performance servo-drives. The machine is controlled by real-time control system with LinuxCNC software. The control is performed via real-time communication bus EtherCAT. The paper also describes the extension of the LinuxCNC control system with NURBS interpolaion and s-curve feedrate profiling. Also research to be performed on the machine is discussed concerning development of trajectory optimization algorithms for parallel kinematics machines.U ovom radu je predstavljena laboratorijska postavka za razvoj algoritama optimizacije trajektorije numerički upravljanih mašina alatki sa spegnutim osama. Laboratorijsku postavku čine DELTA mehanizam u KEOPS konfiguraciji sa linearnim osnaženim osama pogonjenih servo pogonima visokih performansi. Upravljanje mašinom je bazirano na LinuxCNC softverskom sistemu. Komunikacija pri upravljanju se vrši u realnom vremenu preko EtherCAT-a. U radu je takođe opisano proširenje LinuxCNC upravljačkog sistema sa NURBS interpolacijom i profilisanjem brzine pomoćnog kretanja pomoću s-krive. Dalja istraživanja će se odnositi na razvoj algoritama optimizacije trajektorije za mašine alatke sa paralelnom kinematikom

    Toolpath interpolation and smoothing for computer numerical control machining of freeform surfaces : a review

    Get PDF
    Driven by the ever increasing demand in function integration, more and more next generation high value-added products, such as head-up displays, solar concentrators and intra-ocular-lens, etc., are designed to possess freeform (i.e., non-rotational symmetric) surfaces. The toolpath, composed of high density of short linear and circular segments, is generally used in computer numerical control (CNC) systems to machine those products. However, the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration, which will decrease the machining efficiency and product surface finish. Driven by the ever-increasing need for high-speed high-precision machining of those products, many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry, aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods. This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications. The advantages and disadvantages of these approaches are discussed. Possible future research directions are also offered

    Contouring Accuracy Improvement Using an Adaptive Feedrate Planning Method for CNC Machine Tools

    Get PDF
    AbstractThe reduction of contour error plays an important role in achieving high accuracy machining. To reduce contour error, most of previous studies have focused on developing advanced control strategies. As an alternative strategy, contouring accuracy improvement using an adaptive feedrate planning method is proposed in this paper. First, a typical PID controller is adopted to build the contour error model, from which the feedrate can be scheduled in the contour error violated zones. Then, the relations between each constraint and the cutter tip feedrate are derived. After that, a linear programming model is applied to obtain the optimal feedrate profile on the sampling positions of the given tool path. Finally, illustrated examples are given to validate the feasibility and applicability of the proposed feedrate planning method. The comparison results show that the proposed method has a significant effect on improving contouring accuracy

    Smooth and Time-Optimal Trajectory Generation for High Speed Machine Tools

    Get PDF
    In machining complex dies, molds, aerospace and automotive parts, or biomedical components, it is crucial to minimize the cycle time, which reduces costs, while preserving the quality and tolerance integrity of the part being produced. To meet the demands for high quality finishes and low production costs in machining parts with complex geometry, computer numerical control (CNC) machine tools must be equipped with spline interpolation, feedrate modulation, and feedrate optimization capabilities. This thesis presents the development of novel trajectory generation algorithms for Non Uniform Rational B-Spline (NURBS) toolpaths that can be implemented on new low-cost CNC's, as well as, in conjunction with existing CNC's. In order to minimize feedrate fluctuations during the interpolation of NURBS toolpaths, the concept of the feed correction polynomial is applied. Feedrate fluctuations are reduced from around 40 % for natural interpolation to 0.1 % for interpolation with feed correction. Excessive acceleration and jerk in the axes are also avoided. To generate jerk-limited feed motion profiles for long segmented toolpaths, a generalized framework for feedrate modulation, based on the S-curve function, is presented. Kinematic compatibility conditions are derived to ensure that the position, velocity, and acceleration profiles are continuous and that the jerk is limited in all axes. This framework serves as the foundation for the proposed heuristic feedrate optimization strategy in this thesis. Using analytically derived kinematic compatibility equations and an efficient bisection search algorithm, the command feedrate for each segment is maximized. Feasible solutions must satisfy the optimization constraints on the velocity, control signal (i.e. actuation torque), and jerk in each axis throughout the trajectory. The maximized feedrates are used to generate near-optimal feed profiles that have shorter cycle times, approximately 13-26% faster than the feed profiles obtained using the worst-case curvature approach, which is widely used in industrial CNC interpolators. The effectiveness of the NURBS interpolation, feedrate modulation and feedrate optimization techniques has been verified in 3-axis machining experiments of a biomedical implant
    corecore