1,971 research outputs found

    The dc-to-dc converters employing staggered-phase power switches with two-loop control

    Get PDF
    A switched inductor voltage is coupled to a sense winding in each phase, and all sense windings are connected in series to one of two feedback loops to provide a signal that indicates when one of the power switches is on as the principal determinant of switching instants. A sequencer is triggered each time a pulse generator is triggered to turn on a different power switch in sequence at each switching instant

    A buck-boost converter with extended duty-cycle range in the buck voltage region for renewable energy sources

    Get PDF
    Buck-boost DC-DC converters are useful as DC grid interfaces for renewable energy resources. In the classical buck-boost converter, output voltages smaller than the input voltage (the buck region) are observed for duty cycles between 0 and 0.5. Several recent buck-boost converters have been designed to present higher voltage gains. Nevertheless, those topologies show a reduced duty-cycle range, leading to output voltages in the buck region, and thus require the use of very low duty cycles to achieve the lower range of buck output voltages. In this work, we propose a new buck-boost DC-DC converter that privileges the buck region through the extension of the duty-cycle range, enabling buck operation. In fact, the converter proposed here allows output voltages below the input voltage even with duty cycles higher than 0.6. We present the analysis, design, and testing of the extended buck-boost DC-DC converter. Several tests were conducted to illustrate the characteristics of the extended buck-boost DC-DC converter. Test results were obtained using both simulation software and a laboratory prototype.info:eu-repo/semantics/publishedVersio

    A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources

    Get PDF
    Publisher Copyright: © 2023 by the authors.Buck-boost DC–DC converters are useful as DC grid interfaces for renewable energy resources. In the classical buck-boost converter, output voltages smaller than the input voltage (the buck region) are observed for duty cycles between 0 and 0.5. Several recent buck-boost converters have been designed to present higher voltage gains. Nevertheless, those topologies show a reduced duty-cycle range, leading to output voltages in the buck region, and thus require the use of very low duty cycles to achieve the lower range of buck output voltages. In this work, we propose a new buck-boost DC-DC converter that privileges the buck region through the extension of the duty-cycle range, enabling buck operation. In fact, the converter proposed here allows output voltages below the input voltage even with duty cycles higher than 0.6. We present the analysis, design, and testing of the extended buck-boost DC-DC converter. Several tests were conducted to illustrate the characteristics of the extended buck-boost DC-DC converter. Test results were obtained using both simulation software and a laboratory prototype.publishersversionpublishe

    Maximum Power Extraction from a Standalone Photo Voltaic System via Neuro-Adaptive Arbitrary Order Sliding Mode Control Strategy with High Gain Differentiation

    Get PDF
    In this work, a photovoltaic (PV) system integrated with a non-inverting DC-DC buck-boost converter to extract maximum power under varying environmental conditions such as irradiance and temperature is considered. In order to extract maximum power (via maximum power transfer theorem), a robust nonlinear arbitrary order sliding mode-based control is designed for tracking the desired reference, which is generated via feed forward neural networks (FFNN). The proposed control law utilizes some states of the system, which are estimated via the use of a high gain differentiator and a famous flatness property of nonlinear systems. This synthetic control strategy is named neuroadaptive arbitrary order sliding mode control (NAAOSMC). The overall closed-loop stability is discussed in detail and simulations are carried out in Simulink environment of MATLAB to endorse effectiveness of the developed synthetic control strategy. Finally, comparison of the developed controller with the backstepping controller is done, which ensures the performance in terms of maximum power extraction, steady-state error and more robustness against sudden variations in atmospheric conditions

    Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage

    Get PDF
    This paper presents a merged-two-stage circuit topology suitable for either wide-range dc input voltage or ac line voltage at low-to-moderate power levels (e.g., up to 30 W). This two-stage topology is based on a soft-charged switched-capacitor preregulator/transformation stage and a high-frequency magnetic regulator stage. Soft charging of the switched capacitor circuit, zero voltage switching of the high-frequency regulator circuit, and time-based indirect current control are used to maintain high efficiency, high power density, and high power factor. The proposed architecture is applied to an LED driver circuit, and two implementations are demonstrated: a wide input voltage range dc-dc converter and a line interfaced ac-dc converter. The dc-dc converter shows 88%-96% efficiency at 30-W power across 25-200-V input voltage range, and the ac-dc converter achieves 88% efficiency with 0.93 power factor at 8.4-W average power. Contributions of this paper include: 1) demonstrating the value of a merged two-stage architecture to provide substantial design benefits in high-input voltage, low-power step down conversion applications, including both wide-range-input dc-dc and line-input ac-dc systems; 2) introduction of a multimode soft-charged SC stage for the merged architecture that enables compression of an 8:1 input voltage range into a 2:1 intermediate range, along with its implementation, loss considerations, and driving methods; and 3) merging of this topology with an resonant transition discontinuous-mode inverted buck stage and pseudocurrent control to enable step-down power conversion (e.g., for LED lighting) operating at greatly increased frequencies and reduced magnetics size than with more conventional approaches

    MPPT Solar Charge Contoller For Portable

    Get PDF
    The purpose of our senior project was to design and prototype an MPPT charge controller for small capacity PV panels under varying temperature and irradiance conditions to charge portable devices. In this paper we discuss our research, simulation, design, and testing to develop an MPPT solar charge controller. Furthermore, we presented our results and findings from testing our design. An MPPT solar charge controller is feasible and affordable if implemented on a PCB board. Due to MPPT’s affordability and increased efficiency under dynamic conditions, an MPPT solar charge controller for portable devices would be more effective than solar chargers currently sold without MPPT

    Optimal Design of Series-Parallel Differential Power Processing Converters for Photovoltaic Array Energy Systems

    Get PDF
    A scheme is proposed for maximum power point tracking in series-parallel photovoltaic arrays using differential power processing, based on bidirectional Cuk converters and inverted buck converters for adjusting module current and voltage respectively. Converter transfer functions are derived using linearization and state space time averaging. These are used to develop design criteria for well-behaved transient response, and reduction of the effect of non-minimum phase. A representative design with about 10 ms settling is presented. It is shown that this can form the basis of a successful perturb-and-observe control system

    High Efficiency Power Amplifier Based on Envelope Elimination and Restoration Technique

    Get PDF
    Due to complex envelope and phase modulation employed in modern transmitters it is necessary to use power amplifiers that have high linearity. Linear power amplifiers (classes A, B and AB) are commonly used, but they suffer from low efficiency especially if the transmitted signal has high peak to average power ratio (PAPR). Kahn's technique based on envelope elimination and restoration (EER) is based on idea that high efficiency power supply (envelope amplifier) could be used to modulate the envelope of high efficient non linear power amplifiers (classes D or E). This paper presents solutions for power amplifier that performs envelope modulation and class E amplifier that is used as a non linear amplifier. The envelope amplifier is implemented as a multilevel converter in series with linear regulator and can provide up to 100 W of instantaneous power and reproduce 2 MHz sine wave. The implemented Class E amplifier can operate at 120 MHz with efficiency near to 85%. The envelope amplifier and class E amplifier have been integrated and efficiency and linearity of the implemented transmitter has been measured and presente

    Performance Evaluation of Power in GSM BTS in Nigeria Using PV Solar System

    Get PDF
    In a typical Global System of Mobile (GSM) communications, Base Transceiver Station (BTS); the network security and availability with respect to transmission of network signals is a function of power availability on site. This research project is directly aimed at achieving power availability with minimum overhead expenses in respect of fuel consumption on site’s generators. A solar panel is employed as the main supply of power; energy from the sun is converted into dc form through the use of converters while a filter circuit is designed at the power supply unit to give an output with low harmonics. The converter circuits are arranged in forward and reverse modes such that when the solar panel is fully insolated (charging mode) the forward mode operates, while the reverse mode operates when the circuit is discharging. A buck-boost converter is employed to step-up or down the voltage output needed at the different stages. An isolator circuit is employed in this design to isolate the low voltage path (dc path) from the high voltage path (ac circuit). Simulations of the various circuits in this design were carried out using Matlab Simulink to clearly describe the waveforms expected at each output of the functional blocks. Keywords: Transceiver Station (BTS), Global System of Mobile (GSM), Static converter efficiency, Solar Photovoltaic(PV) energy, Inverter
    • …
    corecore