444 research outputs found

    Coordination of pricing, inventory, and production reliability decisions in deteriorating product supply chains

    Get PDF
    In this article, we study a two-level supply chain model for deteriorating items, in which the supplier’s production system is unreliable and the retailer’s demand is price-sensitive. The supplier’s production line may randomly shift from the in-control state to the out-of-control state. When the production line is in the out-of-control state, a proportion of the produced products will have bad quality. To mitigate the out-of-control risks, the supplier can improve the production line reliability by investing in high-quality machines, highly skilled workers, or advanced maintenance technologies. We start with the study of pricing and inventory problems concerning endogenous reliability in the integrated and decentralised scenario. To better illustrate the proposed models, two applicable algorithms are designed to determine the optimal production reliability, ordering quantity, and prices. Then, a cooperative reliability investment and revenue-sharing contract is proposed to coordinate the supply chain. Numerical examples and sensitivity analysis of the equilibrium strategies and coordinating results on key system parameters (e.g. deterioration rate, production rate, etc.) are given to verify the effectiveness of the contract, and meanwhile get some managerial insights

    The Optimal Replenishment Policy under Trade Credit Financing with Ramp Type Demand and Demand Dependent Production Rate

    Get PDF
    This paper investigates the optimal replenishment policy for the retailer with the ramp type demand and demand dependent production rate involving the trade credit financing, which is not reported in the literatures. First, the two inventory models are developed under the above situation. Second, the algorithms are given to optimize the replenishment cycle time and the order quantity for the retailer. Finally, the numerical examples are carried out to illustrate the optimal solutions and the sensitivity analysis is performed. The results show that if the value of production rate is small, the retailer will lower the frequency of putting the orders to cut down the order cost; if the production rate is high, the demand dependent production rate has no effect on the optimal decisions. When the trade credit is less than the growth stage time, the retailer will shorten the replenishment cycle; when it is larger than the breakpoint of the demand, within the maturity stage of the products, the trade credit has no effect on the optimal order cycle and the optimal order quantity

    Decentralized and centralized supply chains with trade credit option

    Get PDF
    The notion of a trade credit period is a common business practice, where a supplier allows a buyer a specified period to make a payment in full for a purchase made. The objective of this thesis is to explore the role of such a credit payment option in supply chain management. Towards this end, a two-echelon supply chain, consisting of a single supplier (e.g. manufacturer) and the cases of both a single and multiple buyers (e.g. retailers) is examined under decentralized (independent) and centralized (coordinated) decision making scenarios. The major emphasis of this research is limited to the case of a single product with price-sensitive deterministic, as well as stochastic market demand.The conditions under which a trade credit period should be offered and its appropriate length are determined from the supplier’s perspective under the decentralized case. Under the centralized decision scenario, the efficacy of a trade credit policy as a supply chain coordination mechanism is thoroughly analyzed and guidelines for pricing, production and delivery decisions are developed. The concepts developed in this study are illustrated via a number of numerical examples, in conjunction with thorough sensitivity analyses involving some selected problem parameters.The major contribution of this thesis is that we incorporate the pricing and inventory issues in supply chains with an endogenous credit payment period. This is the first study that examines the efficacy of trade credit option as a coordination mechanism. We propose a coordination mechanism that coordinates the supply chain, when a trade credit by itself is not sufficient to serve such a purpose, while preserving the benefits of a trade credit option. Also, this study is the first to examine the issues concerning trade credit under price sensitive stochastic demand. Another first for this work is the exploration of the implications of a trade credit policy in supply chains consisting of multiple competing retailers. The effects of the extent of competition and the market size on trade credit policy are evaluated. Our analyses lead to some important practical implications, to serve as managerial guidelines.Ph.D., Decision Sciences -- Drexel University, 201

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications
    corecore