210 research outputs found

    Tinjauan Pustaka Sistematis Penerapan Quality Function Deployment di Industri Manufaktur

    Get PDF
    Quality Function Deployment (QFD) is a tool or planning instrument that is used to provide an overview of customer desires which are then translated into strategic stages to produce products or services whose characteristics are in accordance with customer wishes. The advantage of this method approach is that the level of customer satisfaction can be explained through data, so that improving the quality of services or products and periodic evaluations to correct deficiencies can be carried out in accordance with the customer's assessment. Many studies using the QFD method are carried out by the industry. This literature review aims to analyze the advantages of the QFD method for increasing customer satisfaction in the manufacturing industry. The method used is the Systematic Literature Review. This article involves a study review of 24 articles related to the application of QFD in the manufacturing industry. The study was conducted using the Google Schoolar database. The articles obtained were then summarized, classified, and comprehensively reviewed. This article expands the knowledge and study of the application of QFD in the manufacturing industry. The development of QFD in future research can be carried out in cross-fields that still have links. QFD results can be a tool for making improvements based on the needs or voice of the customer. Improvements made using the QFD method can increase customer satisfaction, increase profits and marketing, improve service quality, and improve product quality

    Strategic supplier performance evaluation::a case-based action research of a UK manufacturing organisation

    Get PDF
    The main aim of this research is to demonstrate strategic supplier performance evaluation of a UK-based manufacturing organisation using an integrated analytical framework. Developing long term relationship with strategic suppliers is common in today׳s industry. However, monitoring suppliers׳ performance all through the contractual period is important in order to ensure overall supply chain performance. Therefore, client organisations need to measure suppliers׳ performance dynamically and inform them on improvement measures. Although there are many studies introducing innovative supplier performance evaluation frameworks and empirical researches on identifying criteria for supplier evaluation, little has been reported on detailed application of strategic supplier performance evaluation and its implication on overall performance of organisation. Additionally, majority of the prior studies emphasise on lagging factors (quality, delivery schedule and value/cost) for supplier selection and evaluation. This research proposes both leading (organisational practices, risk management, environmental and social practices) and lagging factors for supplier evaluation and demonstrates a systematic method for identifying those factors with the involvement of relevant stakeholders and process mapping. The contribution of this article is a real-life case-based action research utilising an integrated analytical model that combines quality function deployment and the analytic hierarchy process method for suppliers׳ performance evaluation. The effectiveness of the method has been demonstrated through number of validations (e.g. focus group, business results, and statistical analysis). Additionally, the study reveals that enhanced supplier performance results positive impact on operational and business performance of client organisation

    Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

    Get PDF
    The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. An appropriate action requirement plan is also suggested, to control and minimize risks associated with e-commerce exercises

    Assessing and Selecting Sustainable and Resilient Suppliers in Agri-Food Supply Chains Using Artificial Intelligence: A Short Review

    Full text link
    [EN] The supplier evaluation and selection process is critical to increase the sustainability and resilience of the agri-food supply chain. Therefore, in this sector, it is necessary to consider sustainability and resilience criteria in the supplier evaluation and selection process. The use of arti¿cial intelligence techniques allows managing of a lot of information and the reduction of uncertainty for decision making. The objective of this article is to analyze articles that address the selection of suppliers in agrifood supply chains that pursue to increase their sustainability and resilience by using arti¿cial intelligence techniques to analyze the techniques and criteria used and draw conclusions.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015.Zavala-Alcívar, A.; Verdecho Sáez, MJ.; Alfaro Saiz, JJ. (2020). Assessing and Selecting Sustainable and Resilient Suppliers in Agri-Food Supply Chains Using Artificial Intelligence: A Short Review. IFIP Advances in Information and Communication Technology. 598:501-510. https://doi.org/10.1007/978-3-030-62412-5_41S501510598Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S.: Quantitative models for sustainable supply chain management: developments and directions. Eur. J. Oper. Res. 233, 299–312 (2014)Ocampo, L.A., Abad, G.K.M., Cabusas, K.G.L., Padon, M.L.A., Sevilla, N.C.: Recent approaches to supplier selection: a review of literature within 2006–2016. Int. J. Integr. Supply Manage. 12, 22–68 (2018)Valipour, S., Safaei, A.: A resilience approach for supplier selection: using Fuzzy analytic network process and grey VIKOR techniques. J. Clean. Prod. 161, 431–451 (2017)Amindoust, A.: A resilient-sustainable based supplier selection model using a hybrid intelligent method. Comput. Ind. Eng. 126, 122–135 (2018)Zavala-Alcívar, A., Verdecho, M.-J., Alfaro-Saiz, J.-J.: A conceptual framework to manage resilience and increase sustainability in the supply chain. Sustainability 12(16), 6300 (2020)Villalobos, J.R., Soto-Silva, W.E., González-Araya, M.C., González-Ramirez, R.G.: Research directions in technology development to support real-time decisions of fresh produce logistics: A review and research agenda. Comput. Electron. Agric. 167, 105092 (2019)Ristono, A., Santoso, P.B., Tama, I.P.: A literature review of design of criteria for supplier selection. J. Ind. Eng. Manage. 11, 680–696 (2018)Torres-Ruiz, A., Ravindran, A.R.: Multiple criteria framework for the sustainability risk assessment of a supplier portfolio. J. Clean. Prod. 172, 4478–4493 (2018)Setak, M., Sharifi, S., Alimohammadian, A.: Supplier selection and order allocation models in supply chain management: a review. World Appl. Sci. J. 18, 55–72 (2012)Ravindran, A.R., Warsing, D.P.: Supplier selection models and methods. In: Supply Chain Engineering: Models and Applications. Taylor and Francis Group, Boca Raton, Florida (2013)De Boer, L., Labro, E., Morlacchi, P.: A review of methods supporting supplier selection. Eur. J. Purch. Supply Manage. 7, 75–89 (2011)De Felice, F., Deldoost, M.H., Faizollahi, M., Petrillo, A.: Performance measurement model for the supplier selection based on AHP. Int. J. Eng. Bus. Manag. 7, 1–13 (2015)Zimmer, K., Fröhling, M., Schultmann, F.: Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 54, 1412–1442 (2016)Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logist. Manag. 15, 1–14 (2014)Ali, A., Mahfouz, A., Arisha, A.: Analysing supply chain resilience: integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Manage. 22, 16–39 (2017)Verdecho, M., Alarcón-Valero, F., Pérez-Perales, D., et al.: A methodology to select suppliers to increase sustainability within supply chains. Cent. Eur. J. Oper. Res. (2020). https://doi.org/10.1007/s10100-019-00668-3Rabelo, L., Bhide, S., Gutierrez, E.: Artificial Intelligence: Advances in Research and Applications. Nova Science Publishers, Inc., Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States (2017)Denyer, D., Tranfield, D.: Producing a systematic review. In: The Sage Handbook of Organizational Research Methods. SAGE Publications Ltd., pp. 671–689 (2019)Chen, Y.-J.: Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. (Ny) 181, 1651–1670 (2011)Hamdi, F., Ghorbel, A., Masmoudi, F., Dupont, L.: Optimization of a supply portfolio in the context of supply chain risk management: literature review. J. Intell. Manuf. 29(4), 763–788 (2015). https://doi.org/10.1007/s10845-015-1128-3Kumar, V., Srinivasan, S., Das, S.: Optimal solution for supplier selection based on SMART fuzzy case base approach. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems. SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems. ISIS 2014, Institute of Electrical and Electronics Engineers Inc., Department of Computer Science, IISJ Yokohama, Tokai Chiba, Japan, pp. 386–391 (2014)Jahani, A., Murad, M.A.A., bin Sulaiman, M.N., Selamat, M.H.: An agent-based supplier selection framework: Fuzzy case-based reasoning perspective. Strateg. Outsourcing 8, 180–205 (2015)Wang, Q.: Hybrid knowledge-based flexible supplier selection. In: 8th International Conference on Management of e-Commerce and e-Government. ICMeCG 2014. Institute of Electrical and Electronics Engineers Inc., Department of Information Management, Shanghai Finance University, Shanghai, China, pp. 235–239 (2014)Bai, C., Sarkis, J.: Green supplier development: analytical evaluation using rough set theory. J. Clean. Prod. 18, 1200–1210 (2010)Bai, C., Sarkis, J.: Integrating sustainability into supplier selection with grey system and rough set methodologies. Int. J. Prod. Econ. 124, 252–264 (2010)Guo, F., Lu, Q.: Partner selection optimization model of agricultural enterprises in supply chain. Adv. J. Food Sci. Technol. 5, 1285–1291 (2013)Azadnia, A.H., Saman, M.Z.M., Wong, K.Y.: Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process. Int. J. Prod. Res. 53, 383–408 (2015)Miranda-Ackerman, M.A., Azzaro-Pantel, C., Aguilar-Lasserre, A.A.: A green supply chain network design framework for the processed food industry: application to the orange juice agrofood cluster. Comput. Ind. Eng. 109, 369–389 (2017)Hajikhani, A., Khalilzadeh, M., Sadjadi, S.J.: A fuzzy multi-objective multi-product supplier selection and order-allocation problem in supply chain under coverage and price considerations: an urban agricultural case study. Sci. Iran. 25, 431–449 (2018)Zhang, H., Cui, Y.: A model combining a Bayesian network with a modified genetic algorithm for green supplier selection. Simulation 95, 1165–1183 (2019)Yadav, S., Garg, D., Luthra, S.: Selection of third-party logistics services for internet of things-based agriculture supply chain management. Int. J. Logist. Syst. Manage. 35, 204–230 (2020)Yazdani, M., Wang, Z.X., Chan, F.T.S.: A decision support model based on the combined structure of DEMATEL, QFD and fuzzy values. Soft. Comput. 24(16), 12449–12468 (2020). https://doi.org/10.1007/s00500-020-04685-2Zhang, H., Feng, H., Cui, Y., Wang, Y.: A fuzzy Bayesian network model for quality control in O2O e-commerce. Int. J. Comput. Commun. Control 15(1), (2020). article number 1003. https://doi.org/10.15837/ijccc.2020.1.3783Amiri, S.A.H.S., Zahedi, A., Kazemi, M., Soroor, J., Hajiaghaei-Keshteli, M.: Determination of the optimal sales level of perishable goods in a two-echelon supply chain network. Comput. Ind. Eng. 139, 106156 (2020)Roy, S., et al.: A framework for sustainable supplier selection with transportation criteria. Int. J. Sustain. Eng. 13(2), 77–92 (2020)Parkouhi, S.V., Ghadikolaei, A.S., Lajimi, H.F.: Resilient supplier selection and segmentation in grey environment. J. Clean. Prod. 207, 1123–1137 (2019)Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations – concepts and practice in manufacturing enterprises. Comput. Ind. Eng. 57, 46–60 (2009)Lezoche, M., Panetto, H., Kacprzyk, J., Hernandez, J., Díaz, M.A.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103187 (2020)Alikhani, R., Torabi, S., Altay, N.: Strategic supplier selection under sustainability and risk criteria. Int. J. Prod. Econ. 208, 69–82 (2019

    The state of the art development of AHP (1979-2017): a literature review with a social network analysis

    Get PDF
    Although many papers describe the evolution of the analytic hierarchy process (AHP), most adopt a subjective approach. This paper examines the pattern of development of the AHP research field using social network analysis and scientometrics, and identifies its intellectual structure. The objectives are: (i) to trace the pattern of development of AHP research; (ii) to identify the patterns of collaboration among authors; (iii) to identify the most important papers underpinning the development of AHP; and (iv) to discover recent areas of interest. We analyse two types of networks: social networks, that is, co-authorship networks, and cognitive mapping or the network of disciplines affected by AHP. Our analyses are based on 8441 papers published between 1979 and 2017, retrieved from the ISI Web of Science database. To provide a longitudinal perspective on the pattern of evolution of AHP, we analyse these two types of networks during the three periods 1979–1990, 1991–2001 and 2002–2017. We provide some basic statistics on AHP journals and researchers, review the main topics and applications of integrated AHPs and provide direction for future research by highlighting some open questions

    Gresilient supplier assessment and order allocation planning

    Get PDF
    Companies are under pressure to re-engineer their supply chains to ‘go green’ while simultaneously improving their resilience to cope with unexpected disruptions where the supplier selection decision plays a strategic role. We present a new approach to supplier evaluation and allocating the optimal order quantity from each supplier with respect to green and resilience (Gresilience) characteristics. An integrated framework that considers traditional business, green and resilience criteria and sub-criteria was developed, followed by a calculation of importance weight of criteria and sub-criteria using analytical hierarchy process (AHP). We evaluate suppliers using the technique for order of preference by similarity to ideal solution (TOPSIS). The obtained weights from AHP and TOPSIS were integrated into a developed multi-objective programming model used as an order allocation planner and the ε-constraint method was used to solve the multi-objective optimization problem. TOPSIS was applied to select the final Pareto solution based on its closeness from the ideal solution. The applicability and effectiveness of the proposed approach was illustrated using a real case study through a comparatively meaningful ranking of suppliers. The study provides a helpful aid for managers seeking to improve their supply chain resilience along with ‘go green’ responsibilities

    Shipbuilding 4.0 Index Approaching Supply Chain

    Get PDF
    The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies
    corecore