4,769 research outputs found

    Personalized medicine : the impact on chemistry

    Get PDF
    An effective strategy for personalized medicine requires a major conceptual change in the development and application of therapeutics. In this article, we argue that further advances in this field should be made with reference to another conceptual shift, that of network pharmacology. We examine the intersection of personalized medicine and network pharmacology to identify strategies for the development of personalized therapies that are fully informed by network pharmacology concepts. This provides a framework for discussion of the impact personalized medicine will have on chemistry in terms of drug discovery, formulation and delivery, the adaptations and changes in ideology required and the contribution chemistry is already making. New ways of conceptualizing chemistry’s relationship with medicine will lead to new approaches to drug discovery and hold promise of delivering safer and more effective therapies

    Integrated Network Pharmacology Approach for Drug Combination Discovery : A Multi-Cancer Case Study

    Get PDF
    Simple Summary Current treatments for complex diseases, including cancer, are generally characterized by high toxicity due to their low selectivity for target cells. Moreover, patients often develop drug resistance, hence becoming less sensitive to the therapy. For this reason, novel, improved, and more specific pharmacological therapies are needed. The high cost and the time required to develop new drugs poses the attention on the development of computational methods for drug repositioning and combination therapy prediction. In this study, we developed an integrated network pharmacology framework that combines mechanistic and chemocentric approaches in order to predict potential drug combinations for cancer therapy. We applied our paradigm in five cancer types, which we used as case studies. Our strategy can be applied to the study of any complex disease by guiding the prioritization of drug combinations. Despite remarkable efforts of computational and predictive pharmacology to improve therapeutic strategies for complex diseases, only in a few cases have the predictions been eventually employed in the clinics. One of the reasons behind this drawback is that current predictive approaches are based only on the integration of molecular perturbation of a certain disease with drug sensitivity signatures, neglecting intrinsic properties of the drugs. Here we integrate mechanistic and chemocentric approaches to drug repositioning by developing an innovative network pharmacology strategy. We developed a multilayer network-based computational framework integrating perturbational signatures of the disease as well as intrinsic characteristics of the drugs, such as their mechanism of action and chemical structure. We present five case studies carried out on public data from The Cancer Genome Atlas, including invasive breast cancer, colon adenocarcinoma, lung squamous cell carcinoma, hepatocellular carcinoma and prostate adenocarcinoma. Our results highlight paclitaxel as a suitable drug for combination therapy for many of the considered cancer types. In addition, several non-cancer-related genes representing unusual drug targets were identified as potential candidates for pharmacological treatment of cancer.Peer reviewe

    SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets

    Get PDF
    Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The SynergyFinder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the SynergyFinder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated SynergyFinder R package includes five main innovations. 1) We extend the mathematical models to higher-order drug combination data analysis and implement dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3) We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to provide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs and cell lines, including their chemical and target information. These annotations will improve the interpretation of the mechanisms of action of drug combinations. To facilitate the use of the R package within the drug discovery community, we also provide a web server at www.synergyfinderplus.org as a user-friendly interface to enable a more flexible and versatile analysis of drug combination data.Peer reviewe

    Analysis of Compound Synergy in High-Throughput Cellular Screens by Population-Based Lifetime Modeling

    Get PDF
    Despite the successful introduction of potent anti-cancer therapeutics, most of these drugs lead to only modest tumor-shrinkage or transient responses, followed by re-growth of tumors. Combining different compounds has resulted in enhanced tumor control and prolonged survival. However, methods querying the efficacy of such combinations have been hampered by limited scalability, analytical resolution, statistical feasibility, or a combination thereof. We have developed a theoretical framework modeling cellular viability as a stochastic lifetime process to determine synergistic compound combinations from high-throughput cellular screens. We apply our method to data derived from chemical perturbations of 65 cancer cell lines with two inhibitors. Our analysis revealed synergy for the combination of both compounds in subsets of cell lines. By contrast, in cell lines in which inhibition of one of both targets was sufficient to induce cell death, no synergy was detected, compatible with the topology of the oncogenically activated signaling network. In summary, we provide a tool for the measurement of synergy strength for combination perturbation experiments that might help define pathway topologies and direct clinical trials
    • 

    corecore