20,234 research outputs found

    An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.High accuracy models are required for informed decision making in urban flood management. This paper develops a new holistic framework for using information collected from multiple sources for setting parameters of a 2D flood model. This illustrates the importance of identifying key urban features from the terrain data for capturing high resolution flood processes. A Cellular Automata based model CADDIES was used to simulate surface water flood inundation. Existing reports and flood photos obtained via social media were used to set model parameters and investigate different approaches for representing infiltration and drainage system capacity in urban flood modelling. The results of different approaches to processing terrain datasets indicate that the representation of urban micro-features is critical to the accuracy of modelling results. The constant infiltration approach is better than the rainfall reduction approach in representing soil infiltration and drainage capacity, as it describes the flood recession process better. This study provides an in-depth insight into high resolution flood modelling.This research was partially funded by the British Council through the Global Innovation Initiative (GII206), the UK Engineering and Physical Sciences Research Council under the Building Resilience into Risk Management project (EP/N010329/1), and the SINATRA project of the NERC Flooding From Intense Rainfall programme (NE/K008765/1). The first author was funded by the China Scholarship Council. The authors would also like to thank the UK Environment Agency for the LIDAR datasets, UK Met Office (BADC) for the Radar rainfall data, Ordnance Survey for the Master Maps, and NVIDIA Corporation for the Tesla K20c GPU used in this research

    Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model

    Get PDF
    In porosity models for urban flooding, artificial porosity is used as a statistical descriptor of the urban medium. Buildings are treated as subgrid-scale features and, even with the use of relatively coarse grids, their effects on the flow are accounted for. Porosity models are attractive for large-scale applications due to limited computational demand with respect to solving the classical Shallow Water Equations on high-resolution grids. In the last decade, effective schemes have been developed that allowed accounting for a wealth of sub-grid processes; unfortunately, they are known to suffer from over-sensitivity to mesh design in the case of anisotropic porosity fields, which are typical of urban layouts. In the present study, a dual porosity approach is implemented into a two-dimensional Finite Element numerical scheme that uses a staggered unstructured mesh. The presence of buildings is modelled using an isotropic porosity in the continuity equation, to account for the reduced water storage, and a tensor formulation for conveyance porosity in the momentum equations, to account for anisotropy and effective flow velocity. The element-by-element definition of porosities, and the use of a staggered grid in which triangular cells convey fluxes and continuity is balanced at grid nodes, allow avoiding undesired mesh-dependency. Tested against refined numerical solutions and data from a laboratory experiment, the model provided satisfactory results. Model limitations are discussed in view of applications to more complex, real urban layouts

    FLIAT, an object-relational GIS tool for flood impact assessment in Flanders, Belgium

    Get PDF
    Floods can cause damage to transportation and energy infrastructure, disrupt the delivery of services, and take a toll on public health, sometimes even causing significant loss of life. Although scientists widely stress the compelling need for resilience against extreme events under a changing climate, tools for dealing with expected hazards lag behind. Not only does the socio-economic, ecologic and cultural impact of floods need to be considered, but the potential disruption of a society with regard to priority adaptation guidelines, measures, and policy recommendations need to be considered as well. The main downfall of current impact assessment tools is the raster approach that cannot effectively handle multiple metadata of vital infrastructures, crucial buildings, and vulnerable land use (among other challenges). We have developed a powerful cross-platform flood impact assessment tool (FLIAT) that uses a vector approach linked to a relational database using open source program languages, which can perform parallel computation. As a result, FLIAT can manage multiple detailed datasets, whereby there is no loss of geometrical information. This paper describes the development of FLIAT and the performance of this tool

    Numerical simulation of flooding from multiple sources using adaptive anisotropic unstructured meshes and machine learning methods

    Get PDF
    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this thesis, a 2D control-volume and finite-element (DCV-FEM) flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. This adaptive unstructured mesh technique can dynamically modify (both, coarsening and refining the mesh) and adapt the mesh to achieve a desired precision, thus better capturing transient and complex flow dynamics as the flow evolves. A flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost. The above adaptive mesh flooding model (named as Floodity) has been further developed by introducing (1) an anisotropic dynamic mesh optimization technique (anisotropic-DMO); (2) multiple flooding sources (extreme rainfall and sea-level events); and (3) a unique combination of anisotropic-DMO and high-resolution Digital Terrain Model (DTM) data. It has been applied to a densely urbanized area within Greve, Denmark. Results from MIKE 21 FM are utilized to validate our model. To assess uncertainties in model predictions, sensitivity of flooding results to extreme sea levels, rainfall and mesh resolution has been undertaken. The use of anisotropic-DMO enables us to capture high resolution topographic features (buildings, rivers and streets) only where and when is needed, thus providing improved accurate flooding prediction while reducing the computational cost. It also allows us to better capture the evolving flow features (wetting-drying fronts). To provide real-time spatio-temporal flood predictions, an integrated long short-term memory (LSTM) and reduced order model (ROM) framework has been developed. This integrated LSTM-ROM has the capability of representing the spatio-temporal distribution of floods since it takes advantage of both ROM and LSTM. To reduce the dimensional size of large spatial datasets in LSTM, the proper orthogonal decomposition (POD) and singular value decomposition (SVD) approaches are introduced. The performance of the LSTM-ROM developed here has been evaluated using Okushiri tsunami as test cases. The results obtained from the LSTM-ROM have been compared with those from the full model (Fluidity). Promising results indicate that the use of LSTM-ROM can provide the flood prediction in seconds, enabling us to provide real-time flood prediction and inform the public in a timely manner, reducing injuries and fatalities. Additionally, data-driven optimal sensing for reconstruction (DOSR) and data assimilation (DA) have been further introduced to LSTM-ROM. This linkage between modelling and experimental data/observations allows us to minimize model errors and determine uncertainties, thus improving the accuracy of modelling. It should be noting that after we introduced the DA approach, the prediction errors are significantly reduced at time levels when an assimilation procedure is conducted, which illustrates the ability of DOSR-LSTM-DA to significantly improve the model performance. By using DOSR-LSTM-DA, the predictive horizon can be extended by 3 times of the initial horizon. More importantly, the online CPU cost of using DOSR-LSTM-DA is only 1/3 of the cost required by running the full model.Open Acces

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Actors and factors - bridging social science findings and urban land use change modeling

    Get PDF
    Recent uneven land use dynamics in urban areas resulting from demographic change, economic pressure and the cities’ mutual competition in a globalising world challenge both scientists and practitioners, among them social scientists, modellers and spatial planners. Processes of growth and decline specifically affect the urban environment, the requirements of the residents on social and natural resources. Social and environmental research is interested in a better understanding and ways of explaining the interactions between society and landscape in urban areas. And it is also needed for making life in cities attractive, secure and affordable within or despite of uneven dynamics.\ud The position paper upon “Actors and factors – bridging social science findings and urban land use change modeling” presents approaches and ideas on how social science findings on the interaction of the social system (actors) and the land use (factors) are taken up and formalised using modelling and gaming techniques. It should be understood as a first sketch compiling major challenges and proposing exemplary solutions in the field of interest

    A remote sensing based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment

    Get PDF
    Pluvial (surface water) flooding is often the cause of significant flood damage in urban areas. However, pluvial flooding is often overlooked in catchments which are historically known for fluvial floods. In this study, we present a conceptual remote sensing based integrated approach to enhance current practice in the estimation of flood extent and damage and characterise the spatial distribution of pluvial and fluvial flooding. Cockermouth, a town which is highly prone to flooding, was selected as a study site. The flood event caused by named storm Desmond in 2015 (5-6/12/2015) was selected for this study. A high resolution digital elevation model (DEM) was produced from a composite digital surface model (DSM) and a digital terrain model (DTM) obtained from the Environment Agency. Using this DEM, a 2D flood model was developed in HEC-RAS (v5) 2D for the study site. Simulations were carried out with and without pluvial flooding. Calibrated models were then used to compare the fluvial and combined (pluvial and fluvial) flood damage areas for different land use types. The number of residential properties affected by both fluvial and combined flooding was compared using a combination of modelled results and data collected from Unmanned Aircraft Systems (UAS). As far as the authors are aware, this is the first time that remote sensing data, hydrological modelling and flood damage data at a property level have been combined to differentiate between the extent of flooding and damage caused by fluvial and pluvial flooding in the same event. Results show that the contribution of pluvial flooding should not be ignored, even in a catchment where fluvial flooding is the major cause of the flood damages. Although the additional flood depths caused by the pluvial contribution were lower than the fluvial flood depths, the affected area is still significant. Pluvial flooding increased the overall number of affected properties by 25%. In addition, it increased the flood depths in a number of properties that were identified as being affected by fluvial flooding, in some cases by more than 50%. These findings show the importance of taking pluvial flooding into consideration in flood management practices. Further, most of the data used in this study was obtained via remote sensing methods, including UAS. This demonstrates the merit of developing a remote sensing based framework to enhance current practices in the estimation of both flood extent and damage
    • 

    corecore