84,605 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Reactive scheduling using a multi-agent model: the SCEP framework

    Get PDF
    Multi-agent systems have been successfully applied to the scheduling problem for some time. However, their use often leads to poorly unsatisfactory disappointing results. A new multi-agent model, called supervisor, customers, environment, producers (SCEP), is suggested in this paper. This model, developed for all types of planning activities, introduces a dialogue between two communities of agents leading to a high level of co-operation. Its two main interests are the following: first it provides a more efficient control of the consequences generated by the local decisions than usual systems to each agent, then the adopted architecture and behaviour permit an easy co-operation between the different SCEP models, which can represent different production functions such as manufacturing, supply management, maintenance or different workshops. As a consequence, the SCEP model can be adapted to a great variety of scheduling/planning problems. This model is applied to the basic scheduling problem of flexible manufacturing systems, andit permits a natural co-habitation between infinite capacity scheduling processes, performedby the manufacturing orders, and finite capacity scheduling processes, performed by the machines. It also provides a framework in order to react to the disturbances occurring at different levels of the workshop
    • …
    corecore