1,330 research outputs found

    A WANFIS Model for Use in System Identification and Structural Control of Civil Engineering Structures

    Get PDF
    With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Artificial neural networks for vibration based inverse parametric identifications: A review

    Get PDF
    Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes

    Multi-Sensor Feature Extraction and Data Fusion Using ANFIS and 2D Wavelet Transform in Structural Health Monitoring

    Get PDF
    In this chapter, a novel feature extraction and data fusion approach for structural damage detection and localisation is presented. This approach combines adaptive network-based fuzzy inference systems (ANFIS) and two-dimensional wavelet transform (2D-WT) technologies. Simultaneous multi-sensor feature extraction and data fusion based on 2D-WT is carried out by forming a 2D multivariate signal, which is used to analyse the structure vibration response by measuring all sensors jointly. Energy values obtained from two-level db3 wavelet decomposition are arranged in a so-called energy percentage matrix (EPM), which is taken as an input for the ANFIS. The system is further trained by defining its output as the structural condition represented by a condition index. A set of output index patterns are defined depending on the level of damage assessment performed. The proposed method was tested through experiments using a cantilever beam structure. The testing results showed that the method is successful in detecting and localising damage by vibration analysis in structural health monitoring

    Modeling of Magnetorheological Dampers under Various Impact Loads

    Get PDF

    Artificial Intelligence Application in Machine Condition Monitoring and Fault Diagnosis

    Get PDF
    The subject of machine condition monitoring and fault diagnosis as a part of system maintenance has gained a lot of interest due to the potential benefits to be learned from reduced maintenance budgets, enhanced productivity and improved machine availability. Artificial intelligence (AI) is a successful method of machine condition monitoring and fault diagnosis since these techniques are used as tools for routine maintenance. This chapter attempts to summarize and review the recent research and developments in the field of signal analysis through artificial intelligence in machine condition monitoring and fault diagnosis. Intelligent systems such as artificial neural network (ANN), fuzzy logic system (FLS), genetic algorithms (GA) and support vector machine (SVM) have previously developed many different methods. However, the use of acoustic emission (AE) signal analysis and AI techniques for machine condition monitoring and fault diagnosis is still rare. In the future, the applications of AI in machine condition monitoring and fault diagnosis still need more encouragement and attention due to the gap in the literature

    A sensitivity comparison of Neuro-fuzzy feature extraction methods from bearing failure signals

    Get PDF
    This thesis presents an account of investigations made into building bearing fault classifiers for outer race faults (ORF), inner race faults (IRF), ball faults (BF) and no fault (NF) cases using wavelet transforms, statistical parameter features and Artificial Neuro-Fuzzy Inference Systems (ANFIS). The test results showed that the ball fault (BF) classifier successfully achieved 100% accuracy without mis-classification, while the outer race fault (ORF), inner race fault (IRF) and no fault (NF) classifiers achieved mixed results

    System identification and control of smart structures: PANFIS modeling method and dissipativity analysis of LQR controllers

    Get PDF
    Maintaining an efficient and reliable infrastructure requires continuous monitoring and control. In order to accomplish these tasks, algorithms are needed to process large sets of data and for modeling based on these processed data sets. For this reason, computationally efficient and accurate modeling algorithms along with data compression techniques and optimal yet practical control methods are in demand. These tools can help model structures and improve their performance. In this thesis, these two aspects are addressed separately. A principal component analysis based adaptive neuro-fuzzy inference system is proposed for fast and accurate modeling of time-dependent behavior of a structure integrated with a smart damper. Since a smart damper can only dissipate energy from structures, a challenge is to evaluate the dissipativity of optimal control methods for smart dampers to decide if the optimal controller can be realized using the smart damper. Therefore, a generalized deterministic definition for dissipativity is proposed and a commonly used controller, LQR is proved to be dissipative. Examples are provided to illustrate the effectiveness of the proposed modeling algorithm and evaluating the dissipativity of LQR control method. These examples illustrate the effectiveness of the proposed modeling algorithm and dissipativity of LQR controller

    Study of Computational and Experimental Methodologies for Cracks Recognition of Vibrating Systems using Modal Parameters

    Get PDF
    Mostly the structural members and machine elements are subjected to progressive static and dynamic loading and that may cause initiation of defects in the form of crack. The cause of damage may be due to the normal operation, accidents or severe natural calamities such as earthquake or storm. That may lead to catastrophic failure or collapse of the structures. Thereby the importance of identification of damage in the structures is not only for leading safe operation but also to prevent the loss of economy and lives. The condition monitoring of the engineering systems is attracted by the researchers and scientists very much to invent the automated fault diagnosis mechanism using the change in vibration response before and after damage. The structural steel is widely used in various engineering systems such as bridges, railway coaches, ships, automobiles, etc. The glass fiber reinforced epoxy layered composite material has become popular for constructing the various engineering structures due to its valuable characteristics such as higher stiffness and strength to weight ratio, better damage tolerance capacity and wear resistance. Therefore, layered composite and structural steel have been taken into account in the current study. The theoretical analysis has been performed to measure the vibration signatures (Natural Frequencies and Mode Shapes) of multiple cracked composite and structural steel. The presence of the crack in structures generates an additional flexibility. That is evaluated by strain energy release rate given by linear fracture mechanics. The additional flexibility alters the dynamic signatures of cracked beam. The local stiffness matrix has been calculated by the inverse of local dimensionless compliance matrix. The finite element analysis has been carried out to measure the vibration signatures of cracked cantilever beam using commercially available finite element software package ANSYS. It is observed from the current analysis, the various factors such as the orientation of cracks, number and position of the cracks affect the performance and effectiveness of damage detection techniques. The various automated artificial intelligent (AI) techniques such as fuzzy controller, neural network and hybrid AI techniques based multiple faults diagnosis systems are developed using vibration response of cracked cantilever beams. The experiments have been conducted to verify the performance and accuracy of proposed methods. A good agreement is observed between the results

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems
    corecore