1,358 research outputs found

    Compact CMOS active quenching/recharge circuit for SPAD arrays

    Get PDF
    Avalanche diodes operating in Geiger mode are able to detect single photon events. They can be employed to photon counting and time-of-flight estimation. In order to ensure proper operation of these devices, the avalanche current must be rapidly quenched, and, later on, the initial equilibrium must be restored. In this paper, we present an active quenching/recharge circuit specially designed to be integrated in the form of an array of single-photon avalanche diode (SPAD) detectors. Active quenching and recharge provide benefits like an accurately controllable pulse width and afterpulsing reduction. In addition, this circuit yields one of the lowest reported area occupations and power consumptions. The quenching mechanism employed is based on a positive feedback loop that accelerates quenching right after sensing the avalanche current. We have employed a current starved inverter for the regulation of the hold-off time, which is more compact than other reported controllable delay implementations. This circuit has been fabricated in a standard 0.18 ÎŒm complementary metal-oxide-semiconductor (CMOS) technology. The SPAD has a quasi-circular shape of 12 ÎŒm diameter active area. The fill factor is about 11%. The measured time resolution of the detector is 187 ps. The photon-detection efficiency (PDE) at 540 nm wavelength is about 5% at an excess voltage of 900 mV. The break-down voltage is 10.3 V. A dark count rate of 19 kHz is measured at room temperature. Worst case post-layout simulations show a 117 ps quenching and 280 ps restoring times. The dead time can be accurately tuned from 5 to 500 ns. The pulse-width jitter is below 1.8 ns when dead time is set to 40 ns.Ministerio de EconomĂ­a y Competitividad TEC2012-38921-C02, IPT-2011-1625-430000, IPC-20111009 CDTIJunta de AndalucĂ­a TIC 2338-2013Office of Naval Research (USA) N00014141035

    InGaAs/InP SPAD with Monolithically Integrated Zinc-Diffused Resistor

    Get PDF
    Afterpulsing and optical crosstalk are significant performance limitations for applications employing near-infrared single-photon avalanche diodes (SPADs). In this paper, we describe an InGaAs/InP SPAD with monolithically integrated resistor that is fully compatible with the planar fabrication process and provides a significant reduction of the avalanche charge and, thus, of afterpulsing and optical crosstalk. In order to have a fast SPAD reset (<50 ns), we fabricated quenching resistors ranging from 10 to 200 k\Ω, smaller than what is available in the literature. The resistor, fabricated with the zinc diffusions already used for avoiding premature edge-breakdown, promptly reduces the avalanche current to a low value ∌ 100~ ÎŒ A in less than 1 ns, while an active circuit completes the quenching and enforces a well-defined hold-off. The proposed mixed-quenching approach guarantees an avalanche charge reduction of more than 20 times compared with similar plain SPADs, enough to reduce the hold-off time down to 1 ÎŒ s. Finally, a compact single-photon counting module based on this detector and featuring 70-ps photon-timing jitter is presented

    CMOS SPADs selection, modeling and characterization towards image sensors implementation

    Get PDF
    The selection, modeling and characterization of Single Photon Avalanche Diodes (SPADs) are presented. Working with the standard 180nm UMC CMOS process, different SPAD structures are proposed in combination with several quenching circuits in order to compare their relative performances. Various configurations for the active region and the prevention of the premature edge breakdown are tested, looking for a miniaturization of the devices to implement image sensor arrays without loses in their performance

    A CMOS 8×8 SPAD array for Time-of-Flight measurement and light-spot statistics

    Get PDF
    The design and simulation of a CMOS 8 × 8 single photon avalanche diode (SPAD) array is presented. The chip has been fabricated in a 0.18ÎŒm standard CMOS technology and implements a double functionality: measuring the Time-of-Flight with the help of a pulsed light source; or computing focal-plane statistics in biomedical imaging applications based on a concentrated light-spot. The incorporation of on-chip processing simplifies the interfacing of the array with the host system. The pixel pitch is 32ÎŒm, while the diameter of the quasi-circular active area of the SPADs is 12ÎŒm. The 113ÎŒm 2 active area is surrounded by a T-well guard ring. The resulting breakdown voltage is 10V with a maximum excess voltage of 1.8V. The pixel incorporates a novel active quenching/reset circuit. The array has been designed to operate with a laser pulsed at 20Mhz. The overall time resolution is 115ps. Focal-plane statistics are obtained in digital format. The maximum throughput of the digital output buffers is 200Mbps.Ministerio de EconomĂ­a y Competitividad IPT-2011-1625- 430000, IPC-20111009Office of Naval Research (USA) N00014111031

    Characterization-Based Modeling of Retriggering and Afterpulsing for Passively Quenched CMOS SPADs

    Get PDF
    The current trend in the design of systems based on CMOS SPADs is to adopt smaller technological nodes, allowing the co-integration of additional electronics for the implementation of complex digital systems on chip. Due to their simplicity, a way to reduce the area occupied by the integrated electronics is the use of passive quenching circuits (PQCs) instead of active (AQCs) or mixed (MQCs) ones. However, the recharge phase in PQCs is slower, so the device can be retriggered before this phase ends. This paper studies the phenomena of afterpulsing and retriggering, depending on the characteristics of the SPADs and the working conditions. In order to do that, a test chip containing SPADs of different size has been characterized in several operating environments. A mathematical model has been proposed for fitting afterpulsing phenomenon. It is shown that retriggering can be also described in terms of this model, suggesting that it is linked to carriers trapped in the shallow levels of the semiconductor and that should be taken into account when considering the total amount of afterpulsing events.Junta de AndalucĂ­a TIC 233

    New Perspective on Passively Quenched Single Photon Avalanche Diodes: Effect of Feedback on Impact Ionization

    Get PDF
    Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load’s feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today’s counting rate barrier in the 1.55–Όm detection window

    Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD

    Get PDF
    We present a novel integrated circuit for subnanosecond gating of InGaAs/InP single-photon avalanche diodes (SPADs). It enables the detector in well-defined time intervals (down to 500 ps) and strongly reduces the afterpulsing effect. It includes a fast pulser with rising/falling edge shorter than 300 ps (20%-80%), a wideband comparator and hold-off logic circuitry. The fast avalanche quenching reduces the charge flow in the SPAD, thus decreasing the afterpulsing, a detrimental effect that limits the maximum count rate of InGaAs/InP SPADs. The wideband SiGe comparator guarantees very low timing jitter of the acquired waveforms: <100 ps (FWHM) at 5 V excess bias voltage, when operated with InGaAs/InP SPAD, whereas we estimate that the time jitter of the circuit is < 30 ps
    • 

    corecore