53 research outputs found

    Identifying and Prioritising Future Robot Control Research with Multi-Criteria Decision-Making

    Get PDF
    The gap between researchers who carry out scientific exploration and practitioners who can make use of the research results is well known. In addition, while practitioners place a high value on research, they do not read many research papers. This paper attempts to define and prioritise future research in robotics using the analytical hierarchy process (AHP). Fifteen research alternatives and gaps, five performance criteria, eight industry types, and six production processes, investigated by both academics and practitioners, are filtered to six alternatives, four performance criteria, three industry types, and three production processes, respectively, based on the most important factors in decision-making. Subsequently, they are analysed by the Expert Choice software. This research aims at bridging the gap between academics and practitioners in robotics research and at conducting research that is relevant to industry. The results indicate that the research in multi-robot control ranked first with 26.8%, followed by the research in safe control with 23.3% and the research in remote robot supervision with 19.0%. The research in force control ranked fourth with 17.8%, followed by the research in 3D vision and wireless communication with 8.4% and 6.4%, respectively. Based on the results, the academics involved in robotics research should direct their effort to the research activities that received the highest priority in the AHP model

    INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT

    Get PDF
    Industry 5.0 acceptance is accelerating, but research is still in its infancy, and existing research covers a small subset of context-specific obstacles. This study aims to enumerate all potential obstacles, quantitatively rank them, and assess interdependencies at the organizational level for Industry 5.0 adoption. To achieve this, we thoroughly review the literature, identify obstacles, and investigate causal relationships using a multi-criteria decision-making approach called single value Neutrosophic TODIM. Single-valued Neutrosophic sets (SVNS) ensembles are employed in a real-world setting to deal with uncertainty and indeterminacy. The suggested strategy enables the experts to conduct group decision-making by focusing on ranking the smaller collection of criterion values and the comparison with the decision-making trial and evaluation laboratory method (DEMATEL). According to the findings, the most significant hurdles are expenses and the funding system, capacity scalability, upskilling, and reskilling of human labor. As a result, a comfortable atmosphere is produced for decision-making, enabling the experts to handle an acceptable amount of data while still making choices

    A Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

    Get PDF
    Autonomous/self-driving vehicles have gained significant attention these days, as one of the intelligent transportation systems. However, those vehicles have risks related to their physical implementation and security against cyber threats. Therefore, this study proposes a new security-by-design model for estimating the uncertainty of autonomous vehicles and measuring cyber risks; thus it assists decision-makers in addressing the risks of the physical design and their attack surfaces. The proposed model is developed using neutrosophic sets that efficiently tackle multi-criteria decision-making (MCDM) problems with extensive conflicting criteria and alternatives. The proposed model integrates MCDM, Analytic Hierarchy Process (AHP), Multi-Attributive Border Approximation Area Comparison (MABAC), and Preference Ranking Organization Method for Enrichment Evaluations II (PROMETHEE II), along with single-valued neutrosophic sets (SVNSs). An illustrative case considering ten risks in self-driving vehicles is used to validate the feasibility of the proposed model. Compared to the state-of-the-art methods, the proposed model is considered consistent and reliable to deal with and represent uncertainty and incomplete risk information using neutrosophic sets

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Collected Papers (on Neutrosophics, Plithogenics, Hypersoft Set, Hypergraphs, and other topics), Volume X

    Get PDF
    This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, ‪Gabrijela Popović‬‬‬‬‬, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.‬

    An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains

    Get PDF
    Digital supply chains (DSCs) are collaborative digital systems designed to quickly and efficiently move information, products, and services through global supply chains. The physical flow of products in traditional supply chains is replaced by the digital flow of information in DSCs. This digitalization has changed the conventional supplier selection processes. We propose an integrated and comprehensive fuzzy multicriteria model for supplier selection in DSCs. The proposed model integrates the fuzzy best-worst method (BWM) with the fuzzy multi-objective optimization based on ratio analysis plus full multiplicative form (MULTIMOORA), fuzzy complex proportional assessment of alternatives (COPRAS), and fuzzy technique for order preference by similarity to ideal solution (TOPSIS). The fuzzy BWM approach is used to measure the importance weights of the digital criteria. The fuzzy MULTIMOORA, fuzzy COPRAS, and fuzzy TOPSIS methods are used as prioritization methods to rank the suppliers. The maximize agreement heuristic (MAH) is used to aggregate the supplier rankings obtained from the prioritization methods into a consensus ranking. We present a real-world case study in a manufacturing company to demonstrate the applicability of the proposed method
    corecore