2,426 research outputs found

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues

    On the integration of digital technologies into mathematics classrooms

    Get PDF
    Trouche‘s (2003) presentation at the Third Computer Algebra in Mathematics Education Symposium focused on the notions of instrumental genesis and of orchestration: the former concerning the mutual transformation of learner and artefact in the course of constructing knowledge with technology; the latter concerning the problem of integrating technology into classroom practice. At the Symposium, there was considerable discussion of the idea of situated abstraction, which the current authors have been developing over the last decade. In this paper, we summarise the theory of instrumental genesis and attempt to link it with situated abstraction. We then seek to broaden Trouche‘s discussion of orchestration to elaborate the role of artefacts in the process, and describe how the notion of situated abstraction could be used to make sense of the evolving mathematical knowledge of a community as well as an individual. We conclude by elaborating the ways in which technological artefacts can provide shared means of mathematical expression, and discuss the need to recognise the diversity of student‘s emergent meanings for mathematics, and the legitimacy of mathematical expression that may be initially divergent from institutionalised mathematics

    Together we stand, Together we fall, Together we win: Dynamic Team Formation in Massive Open Online Courses

    Full text link
    Massive Open Online Courses (MOOCs) offer a new scalable paradigm for e-learning by providing students with global exposure and opportunities for connecting and interacting with millions of people all around the world. Very often, students work as teams to effectively accomplish course related tasks. However, due to lack of face to face interaction, it becomes difficult for MOOC students to collaborate. Additionally, the instructor also faces challenges in manually organizing students into teams because students flock to these MOOCs in huge numbers. Thus, the proposed research is aimed at developing a robust methodology for dynamic team formation in MOOCs, the theoretical framework for which is grounded at the confluence of organizational team theory, social network analysis and machine learning. A prerequisite for such an undertaking is that we understand the fact that, each and every informal tie established among students offers the opportunities to influence and be influenced. Therefore, we aim to extract value from the inherent connectedness of students in the MOOC. These connections carry with them radical implications for the way students understand each other in the networked learning community. Our approach will enable course instructors to automatically group students in teams that have fairly balanced social connections with their peers, well defined in terms of appropriately selected qualitative and quantitative network metrics.Comment: In Proceedings of 5th IEEE International Conference on Application of Digital Information & Web Technologies (ICADIWT), India, February 2014 (6 pages, 3 figures

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 346)

    Get PDF
    This bibliography lists 134 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 224

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1981

    Investigation 7. Instrumental genesis in technology mediated learning : From double stimulation to expansive knowledge practices

    Get PDF
    The purpose of the present paper is to examine the sociocultural foundations of technology-mediated collaborative learning. Toward that end, we discuss the role of artifacts in knowledge-creating inquiry, relying on the theoretical ideas of Carl Bereiter, Merlin Donald, Pierre Rabardel, Keith Sawyer, and L. S. Vygotsky. We argue that epistemic mediation triggers expanded inquiry and plays a crucial role in knowledge creation; such mediation involves using CSCL technologies to create epistemic artifacts for crystallizing cognitive processes, remediating subsequent activity, and building an evolving body of knowledge. Productive integration of CSCL technologies as instruments of learning and instruction is a developmental process: it requires iterative efforts across extended periods of time. Going through such a process of instrumental genesis requires transforming a cognitive-cultural operating system of activity, thus “reformatting” the brain and the mind. Because of the required profound personal and social transformations, one sees that innovative knowledge-building practices emerge, socially, through extended expansive learning cycles.Peer reviewe

    Conceptual and socio-cognitive support for collaborative learning in videoconferencing environments

    Get PDF
    Studies have shown that videoconferences are an effective medium for facilitating communication between parties who are separated by distance. Furthermore, studies reveal that videoconferences are effective when used for distance learning, particularly when learners are engaged in complex collaborative learning tasks. However, as in face-to-face communication, learners benefit most when they receive additional support for such learning tasks. This article provides an overview of three empirical studies to illustrate more general insights regarding some of the more and less effective ways of supporting collaborative learning with videoconferencing. The focus is on conceptual support, such as structural visualization and socio-cognitive support, such as scripts. Based on the results of the three studies, conclusions can be drawn about the conceptual and socio-cognitive support measures that promote learning. Conclusions can also be reached about the need for employing both conceptual and socio-cognitive support to provide learners with the most benefit

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded
    • 

    corecore