262,352 research outputs found

    Long-Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface

    Get PDF
    In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which is accompanyed by a change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of sixfold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, it is unraveled how the local oxygen octahedral coupling at perovskite heterostructural interfaces strongly influences the domain structure and symmetry of the epitaxial films resulting in design rules to induce various structures in thin films using carefully selected combinations of substrate/buffer/film. Very interestingly it is discovered that these combinations lead to structure changes throughout the full thickness of the film. The results provide a deep insight into understanding the origin of induced structures in a perovskite heterostructure and an intelligent route to achieve unique functional properties

    Output frequency response function-based analysis for nonlinear Volterra systems

    Get PDF
    Analysis of nonlinear systems has been studied extensively. Based on some recently developed results, a new systematic approach to the analysis of nonlinear Volterra systems in the frequency domain is proposed in this paper, which provides a novel insight into the frequency domain analysis and design of nonlinear systems subject to a general input instead of only specific harmonic inputs using input-output experimental data. A general procedure to conduct an output frequency response function (OFRF) based analysis is given, and some fundamental results and techniques are established for this purpose. A case study for the analysis of a circuit system is provided to illustrate this new frequency domain method

    Conformity, deformity and reformity

    Get PDF
    In any given field of artistic practice, practitioners position themselves—or find themselves positioned—according to interests and allegiances with specific movements, genres, and traditions. Selecting particular frameworks through which to approach the development of new ideas, patterns and expressions, balance is invariably maintained between the desire to contribute towards and connect with a particular set of domain conventions, whilst at the same time developing distinction and recognition as a creative individual. Creativity through the constraints of artistic domain, discipline and style provides a basis for consideration of notions of originality in the context of activity primarily associated with reconfiguration, manipulation and reorganisation of existing elements and ideas. Drawing from postmodern and post-structuralist perspectives in the analysis of modern hybrid art forms and the emergence of virtual creative environments, the transition from traditional artistic practice and notions of craft and creation, to creative spaces in which elements are manipulated, mutated, combined and distorted with often frivolous or subversive intent are considered. This paper presents an educational and musically focused perspective of the relationship between the individual and domain-based creative practice. Drawing primarily from musical and audio-visual examples with particular interest in creative disruption of pre-existing elements, creative strategies of appropriation and recycling are explored in the context of music composition and production. Conclusions focus on the interpretation of creativity as essentially a process of recombination and manipulation and highlight how the relationship between artist and field of practice creates unique creative spaces through which new ideas emerge

    The parametric characteristics of frequency response functions for nonlinear systems

    Get PDF
    The characteristics of the frequency response functions of nonlinear systems can be revealed and analyzed through the analysis of the parametric characteristics of these functions. To achieve these objectives, a new operator is defined, and several fundamental and important results about the parametric characteristics of the frequency response functions of nonlinear systems are developed. These theoretical results provide a significant and novel insight into the frequency domain characteristics of nonlinear systems and circumvent a large amount of complicated integral and symbolic calculations which have previously been required to perform nonlinear system frequency domain analysis. Several new results for the analysis and synthesis of nonlinear systems are also developed. Examples are included to illustrate potential applications of the new results

    Nonlinear influence in the frequency domain: alternating series

    Get PDF
    The nonlinear influence on system output spectrum is studied for a class of nonlinear systems which have Volterra series expansion. It is shown that system output spectrum can be expressed into an alternating series with respect to some model nonlinear parameters under certain conditions. This alternating series has some interesting properties by which system output spectrum can be suppressed easily. The sufficient (and necessary) conditions in which the output spectrum can be transformed into an alternating series are studied. These results reveal a novel characteristic of the nonlinear influence on a system in the frequency domain, and provide a novel insight into the analysis and design of a class of nonlinear systems. Examples are given to illustrate the results
    • …
    corecore