54,755 research outputs found

    Going Deeper into First-Person Activity Recognition

    Full text link
    We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features such as hand appearance, object attributes, local hand motion and camera ego-motion are important for characterizing first-person actions. To integrate these ideas under one framework, we propose a twin stream network architecture, where one stream analyzes appearance information and the other stream analyzes motion information. Our appearance stream encodes prior knowledge of the egocentric paradigm by explicitly training the network to segment hands and localize objects. By visualizing certain neuron activation of our network, we show that our proposed architecture naturally learns features that capture object attributes and hand-object configurations. Our extensive experiments on benchmark egocentric action datasets show that our deep architecture enables recognition rates that significantly outperform state-of-the-art techniques -- an average 6.6%6.6\% increase in accuracy over all datasets. Furthermore, by learning to recognize objects, actions and activities jointly, the performance of individual recognition tasks also increase by 30%30\% (actions) and 14%14\% (objects). We also include the results of extensive ablative analysis to highlight the importance of network design decisions.

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Mobility Study for Named Data Networking in Wireless Access Networks

    Full text link
    Information centric networking (ICN) proposes to redesign the Internet by replacing its host-centric design with information-centric design. Communication among entities is established at the naming level, with the receiver side (referred to as the Consumer) acting as the driving force behind content delivery, by interacting with the network through Interest message transmissions. One of the proposed advantages for ICN is its support for mobility, by de-coupling applications from transport semantics. However, so far, little research has been conducted to understand the interaction between ICN and mobility of consuming and producing applications, in protocols purely based on information-centric principles, particularly in the case of NDN. In this paper, we present our findings on the mobility-based performance of Named Data Networking (NDN) in wireless access networks. Through simulations, we show that the current NDN architecture is not efficient in handling mobility and architectural enhancements needs to be done to fully support mobility of Consumers and Producers.Comment: to appear in IEEE ICC 201
    • …
    corecore