486 research outputs found

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Multidimensional Wavelets and Computer Vision

    Get PDF
    This report deals with the construction and the mathematical analysis of multidimensional nonseparable wavelets and their efficient application in computer vision. In the first part, the fundamental principles and ideas of multidimensional wavelet filter design such as the question for the existence of good scaling matrices and sensible design criteria are presented and extended in various directions. Afterwards, the analytical properties of these wavelets are investigated in some detail. It will turn out that they are especially well-suited to represent (discretized) data as well as large classes of operators in a sparse form - a property that directly yields efficient numerical algorithms. The final part of this work is dedicated to the application of the developed methods to the typical computer vision problems of nonlinear image regularization and the computation of optical flow in image sequences. It is demonstrated how the wavelet framework leads to stable and reliable results for these problems of generally ill-posed nature. Furthermore, all the algorithms are of order O(n) leading to fast processing

    Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

    Get PDF
    We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space BB endowed with a quadratic norm ∄⋅∄\|\cdot\|, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of u∈Bu\in B, given partial measurements [ϕi,u][\phi_i, u] with ϕi∈B∗\phi_i\in B^*, using relative error in ∄⋅∄\|\cdot\|-norm as a loss) is a centered Gaussian field Ο\xi solely determined by the norm ∄⋅∄\|\cdot\|, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm ∄⋅∄\|\cdot\| and induce a multi-resolution decomposition of BB that is adapted to the eigensubspaces of the operator defining the norm ∄⋅∄\|\cdot\|. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from H0sH^s_0 to H−sH^{-s} or to L2L^2) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to O(Npolylog⁥N)\mathcal{O}(N \operatorname{polylog} N) solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).Comment: 142 pages. 14 Figures. Presented at AFOSR (Aug 2016), DARPA (Sep 2016), IPAM (Apr 3, 2017), Hausdorff (April 13, 2017) and ICERM (June 5, 2017

    Optimal Filter Banks for Multiple Description Coding: Analysis and Synthesis

    Get PDF
    Multiple description (MD) coding is a source coding technique for information transmission over unreliable networks. In MD coding, the coder generates several different descriptions of the same signal and the decoder can produce a useful reconstruction of the source with any received subset of these descriptions. In this paper, we study the problem of MD coding of stationary Gaussian sources with memory. First, we compute an approximate MD rate distortion region for these sources, which we prove to be asymptotically tight at high rates. This region generalizes the MD rate distortion region of El Gamal and Cover (1982), and Ozarow (1980) for memoryless Gaussian sources. Then, we develop an algorithm for the design of optimal two-channel biorthogonal filter banks for MD coding of Gaussian sources. We show that optimal filters are obtained by allocating the redundancy over frequency with a reverse "water-filling" strategy. Finally, we present experimental results which show the effectiveness of our filter banks in the low complexity, low rate regim

    Mathematics behind a Class of Image Restoration Algorithms

    Get PDF
    The restoration techniques are usually oriented toward modeling the type of degradation in order to infer the inverse process for recovering the given image. This approach usually involves the option for a criterion to numerically evaluate the quality of the resulted image and consequently the restoration process can be expressed in terms of an optimization problem. Most of the approaches are essentially based on additional hypothesis concerning the statistical properties of images. However, in real life applications, there is no enough information to support a certain particular image model, and consequently model-free developments have to be used instead. In our approaches the problem of image denoising/restoration is viewed as an information transmission/processing system, where the signal representing a certain clean image is transmitted through a noisy channel and only a noise-corrupted version is available. The aim is to recover the available signal as much as possible by using different noise removal techniques that is to build an accurate approximation of the initial image. Unfortunately, a series of image qualities, as for instance clarity, brightness, contrast, are affected by the noise removal techniques and consequently there is a need to partially restore them on the basis of information extracted exclusively from data. Following a brief description of the image restoration framework provided in the introductory part, a PCA-based methodology is presented in the second section of the paper. The basics of a new informational-based development for image restoration purposes and scatter matrix-based methods are given in the next two sections. The final section contains concluding remarks and suggestions for further work
    • 

    corecore