15,545 research outputs found

    Segmentation of the evolving left ventricle by learning the dynamics

    Get PDF
    We propose a method for recursive segmentation of the left ventricle (LV) across a temporal sequence of magnetic resonance (MR) images. The approach involves a technique for learning the LV boundary dynamics together with a particle-based inference algorithm on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and boundary estimation involves incorporating curve evolution into state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. We assess and demonstrate the effectiveness of the proposed framework on a large data set of breath-hold cardiac MR image sequences

    Preprocessing Solar Images while Preserving their Latent Structure

    Get PDF
    Telescopes such as the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory, a NASA satellite, collect massive streams of high resolution images of the Sun through multiple wavelength filters. Reconstructing pixel-by-pixel thermal properties based on these images can be framed as an ill-posed inverse problem with Poisson noise, but this reconstruction is computationally expensive and there is disagreement among researchers about what regularization or prior assumptions are most appropriate. This article presents an image segmentation framework for preprocessing such images in order to reduce the data volume while preserving as much thermal information as possible for later downstream analyses. The resulting segmented images reflect thermal properties but do not depend on solving the ill-posed inverse problem. This allows users to avoid the Poisson inverse problem altogether or to tackle it on each of \sim10 segments rather than on each of \sim107^7 pixels, reducing computing time by a factor of \sim106^6. We employ a parametric class of dissimilarities that can be expressed as cosine dissimilarity functions or Hellinger distances between nonlinearly transformed vectors of multi-passband observations in each pixel. We develop a decision theoretic framework for choosing the dissimilarity that minimizes the expected loss that arises when estimating identifiable thermal properties based on segmented images rather than on a pixel-by-pixel basis. We also examine the efficacy of different dissimilarities for recovering clusters in the underlying thermal properties. The expected losses are computed under scientifically motivated prior distributions. Two simulation studies guide our choices of dissimilarity function. We illustrate our method by segmenting images of a coronal hole observed on 26 February 2015

    Cellular automata segmentation of brain tumors on post contrast MR images

    Get PDF
    In this paper, we re-examine the cellular automata(CA) al- gorithm to show that the result of its state evolution converges to that of the shortest path algorithm. We proposed a complete tumor segmenta- tion method on post contrast T1 MR images, which standardizes the VOI and seed selection, uses CA transition rules adapted to the problem and evolves a level set surface on CA states to impose spatial smoothness. Val- idation studies on 13 clinical and 5 synthetic brain tumors demonstrated the proposed algorithm outperforms graph cut and grow cut algorithms in all cases with a lower sensitivity to initialization and tumor type

    Fast 2D/3D object representation with growing neural gas

    Get PDF
    This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object
    corecore