3,518 research outputs found

    Gravitational Clustering: A Simple, Robust and Adaptive Approach for Distributed Networks

    Full text link
    Distributed signal processing for wireless sensor networks enables that different devices cooperate to solve different signal processing tasks. A crucial first step is to answer the question: who observes what? Recently, several distributed algorithms have been proposed, which frame the signal/object labelling problem in terms of cluster analysis after extracting source-specific features, however, the number of clusters is assumed to be known. We propose a new method called Gravitational Clustering (GC) to adaptively estimate the time-varying number of clusters based on a set of feature vectors. The key idea is to exploit the physical principle of gravitational force between mass units: streaming-in feature vectors are considered as mass units of fixed position in the feature space, around which mobile mass units are injected at each time instant. The cluster enumeration exploits the fact that the highest attraction on the mobile mass units is exerted by regions with a high density of feature vectors, i.e., gravitational clusters. By sharing estimates among neighboring nodes via a diffusion-adaptation scheme, cooperative and distributed cluster enumeration is achieved. Numerical experiments concerning robustness against outliers, convergence and computational complexity are conducted. The application in a distributed cooperative multi-view camera network illustrates the applicability to real-world problems.Comment: 12 pages, 9 figure

    Statistical Performance Analysis of MDL Source Enumeration in Array Processing

    Full text link
    In this correspondence, we focus on the performance analysis of the widely-used minimum description length (MDL) source enumeration technique in array processing. Unfortunately, available theoretical analysis exhibit deviation from the simulation results. We present an accurate and insightful performance analysis for the probability of missed detection. We also show that the statistical performance of the MDL is approximately the same under both deterministic and stochastic signal models. Simulation results show the superiority of the proposed analysis over available results.Comment: Accepted for publication in IEEE Transactions on Signal Processing, April 200

    Source enumeration in non-white noise and small sample size via subspace averaging

    Get PDF
    This paper addresses the problem of source enumeration by an array of sensors in the challenging conditions of: i) large uniform arrays with few snapshots, and ii) non-white or spatially correlated noises with arbitrary correlation. To solve this problem, we combine a subspace averaging (SA) technique, recently proposed for the case of independent and identically distributed (i.i.d.) noises, with a majority vote approach. The number of sources is detected for increasing dimensions of the SA technique and then a majority vote is applied to determine the final estimate. As illustrated by some simulation examples, this simple modification makes SA a very robust method of enumerating sources in these challenging scenarios.This work was supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grants TEC2016-75067-C4-4-R (CARMEN) and BES-2017-080542
    • …
    corecore