792 research outputs found

    An information model for computable cancer phenotypes

    Get PDF

    Evaluating openEHR for storing computable representations of electronic health record phenotyping algorithms

    Get PDF
    Electronic Health Records (EHR) are data generated during routine clinical care. EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the pace of precision medicine at scale. A main EHR use-case is creating phenotyping algorithms to define disease status, onset and severity. Currently, no common machine-readable standard exists for defining phenotyping algorithms which often are stored in human-readable formats. As a result, the translation of algorithms to implementation code is challenging and sharing across the scientific community is problematic. In this paper, we evaluate openEHR, a formal EHR data specification, for computable representations of EHR phenotyping algorithms.Comment: 30th IEEE International Symposium on Computer-Based Medical Systems - IEEE CBMS 201

    Combining semantic web technologies with evolving fuzzy classifier eClass for EHR-based phenotyping : a feasibility study

    Get PDF
    In parallel to nation-wide efforts for setting up shared electronic health records (EHRs) across healthcare settings, several large-scale national and international projects are developing, validating, and deploying electronic EHR oriented phenotype algorithms that aim at large-scale use of EHRs data for genomic studies. A current bottleneck in using EHRs data for obtaining computable phenotypes is to transform the raw EHR data into clinically relevant features. The research study presented here proposes a novel combination of Semantic Web technologies with the on-line evolving fuzzy classifier eClass to obtain and validate EHR-driven computable phenotypes derived from 1956 clinical statements from EHRs. The evaluation performed with clinicians demonstrates the feasibility and practical acceptability of the approach proposed

    Computational methods in cancer gene networking

    Get PDF
    In the past few years, many high-throughput techniques have been developed and applied to biological studies. These techniques such as “next generation” genome sequencing, chip-on-chip, microarray and so on can be used to measure gene expression and gene regulatory elements in a genome-wide scale. Moreover, as these technologies become more affordable and accessible, they have become a driving force in modern biology. As a result, huge amount biological data have been produced, with the expectation of increasing number of such datasets to be generated in the future. High-throughput data are more comprehensive and unbiased, but ‘real signals’ or biological insights, molecular mechanisms and biological principles are buried in the flood of data. In current biological studies, the bottleneck is no longer a lack of data, but the lack of ingenuity and computational means to extract biological insights and principles by integrating knowledge and high-throughput data. 

Here I am reviewing the concepts and principles of network biology and the computational methods which can be applied to cancer research. Furthermore, I am providing a practical guide for computational analysis of cancer gene networks

    Desiderata for the development of next-generation electronic health record phenotype libraries

    Get PDF
    Background High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large electronic health record repositories and are characterized by properties such as portability, reproducibility, and validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by disparate tooling. Methods A group of researchers examined work to date on phenotype models, implementation, and validation, as well as contemporary phenotype libraries developed as a part of their own phenomics communities. Existing phenotype frameworks were also examined. This work was translated and refined by all the authors into a set of best practices. Results We present 14 library desiderata that promote high-quality phenotype definitions, in the areas of modelling, logging, validation, and sharing and warehousing. Conclusions There are a number of choices to be made when constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers towards their further development to support portable, reproducible, and clinically valid phenotype design. The provision of high-quality phenotype definitions enables electronic health record data to be more effectively used in medical domains

    Finding Our Way through Phenotypes

    Get PDF
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility
    • …
    corecore