5,169 research outputs found

    A generalised significance test for individual communities in networks

    Get PDF
    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.Comment: 20 pages, 4 figures and 4 table

    Clustering of exchange rates and their dynamics under different dependence measures

    Get PDF
    This paper proposes an improvement to the method for clustering exchange rates given by D. J. Fenn et al, in Quantitative Finance, 12 (10) 2012, pp.1493-1520. To deal with the potentially non linear nature of currency time series dependence, we propose two alternative similarity metrics to use instead of the one used in the aforementioned paper based on Pearson correlation. Our proposed similarity metrics are based upon Kendall and distance correlations. We observe how each of the newly adapted clustering methods respond over several years of currency exchange data and find significant differences in the resulting clusters.Peer ReviewedPostprint (published version

    Learning Reputation in an Authorship Network

    Full text link
    The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models

    On methods to assess the significance of community structure in networks of financial time series

    Get PDF
    We consider the problem of determining whether the community structure found by a clustering algorithm applied to nancial time series is statistically signi cant, or is due to pure chance, when no other information than the observed values and a similarity measure among time series are available. As a subsidiary problem we also analyse the in uence of the choice of similarity measure in the accuracy of the clustering method. We propose two raw-data based methods for assessing robustness of clustering algorithms on time-dependent data linked by a relation of similarity: One based on community scoring functions that quantify some topological property that characterises ground-truth communities, and another based on random perturbations and quanti cation of the variation in the community structure. These methodologies are well-established in the realm of unweighted networks; our contribution are versions of these methodologies properly adapted to complete weighted networks.Peer ReviewedPostprint (published version

    Large-scale multi-objective influence maximisation with network downscaling

    Get PDF
    Finding the most influential nodes in a network is a computationally hard problem with several possible applications in various kinds of network-based problems. While several methods have been proposed for tackling the influence maximisation (IM) problem, their runtime typically scales poorly when the network size increases. Here, we propose an original method, based on network downscaling, that allows a multi-objective evolutionary algorithm (MOEA) to solve the IM problem on a reduced scale network, while preserving the relevant properties of the original network. The downscaled solution is then upscaled to the original network, using a mechanism based on centrality metrics such as PageRank. Our results on eight large networks (including two with ∼\sim50k nodes) demonstrate the effectiveness of the proposed method with a more than 10-fold runtime gain compared to the time needed on the original network, and an up to 82%82\% time reduction compared to CELF

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    Configuration model for correlation matrices preserving the node strength

    Get PDF
    Correlation matrices are a major type of multivariate data. To examine properties of a given correlation matrix, a common practice is to compare the same quantity between the original correlation matrix and reference correlation matrices, such as those derived from random matrix theory, that partially preserve properties of the original matrix. We propose a model to generate such reference correlation and covariance matrices for the given matrix. Correlation matrices are often analysed as networks, which are heterogeneous across nodes in terms of the total connectivity to other nodes for each node. Given this background, the present algorithm generates random networks that preserve the expectation of total connectivity of each node to other nodes, akin to configuration models for conventional networks. Our algorithm is derived from the maximum entropy principle. We will apply the proposed algorithm to measurement of clustering coefficients and community detection, both of which require a null model to assess the statistical significance of the obtained results.Comment: 8 figures, 4 table
    • …
    corecore