1,589 research outputs found

    TaIrTe4 a ternary Type-II Weyl semi-metal

    Full text link
    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semi-metals. Here we identify TaIrTe4 as a third member of this family of topological semi-metals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states - Fermi arcs connecting Weyl nodes of opposite chirality - extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments

    Structural classification of quasi-one-dimensional ternary nitrides

    Get PDF
    This review focuses on the crystal structural features of ternary (mixed-metal) quasi-one-dimensional nitrides i.e., nitrides containing (cation-³⁻) coordination polyhedra sharing either corners, edges, or faces, arranged in linear chains, and intercalated by a counter ion. The current relevance of these nitrides, and of quasi-one-dimensional compounds in general, lies in the fact that they are closely related to the pure one-dimensional systems (i.e., nanowires), which are vastly researched for their amazing properties closely related to their low dimensionality. A number of these properties were firstly discovered in quasi-one-dimensional compounds, highlighting the importance of expanding knowledge and research in this area. Furthermore, unlike oxides, nitrides and other non-oxide compounds are less developed, hence more difficult to categorise into structural classes that can then be related to other classes of compounds, leading to a fuller picture of structure–properties relationship. Within this context, this review aims to categorise and describe a number of ternary (mixed-metal) quasi-one-dimensional nitrides according to their structural features, specifically, the polyhedra forming the one-dimensional chains

    Symmetry Decomposition of Potentials with Channels

    Full text link
    We discuss the symmetry decomposition of the average density of states for the two dimensional potential V=x2y2V=x^2y^2 and its three dimensional generalisation V=x2y2+y2z2+z2x2V=x^2y^2+y^2z^2+z^2x^2. In both problems, the energetically accessible phase space is non-compact due to the existence of infinite channels along the axes. It is known that in two dimensions the phase space volume is infinite in these channels thus yielding non-standard forms for the average density of states. Here we show that the channels also result in the symmetry decomposition having a much stronger effect than in potentials without channels, leading to terms which are essentially leading order. We verify these results numerically and also observe a peculiar numerical effect which we associate with the channels. In three dimensions, the volume of phase space is finite and the symmetry decomposition follows more closely that for generic potentials --- however there are still non-generic effects related to some of the group elements

    Charge order in Fe2OBO3: An LSDA+U study

    Get PDF
    Charge ordering in the low-temperature monoclinic structure of iron oxoborate (Fe2OBO3) is investigated using the local spin density approximation (LSDA)+U method. While the difference between t_{2g} minority occupancies of Fe^{2+} and Fe^{3+} cations is large and gives direct evidence for charge ordering, the static "screening" is so effective that the total 3d charge separation is rather small. The occupied Fe^{2+} and Fe^{3+} cations are ordered alternately within the chain which is infinite along the a-direction. The charge order obtained by LSDA+U is consistent with observed enlargement of the \beta angle. An analysis of the exchange interaction parameters demonstrates the predominance of the interribbon exchange interactions which determine the whole L-type ferrimagnetic spin structure.Comment: 7 pages, 8 figure

    Spectral curves and the mass of hyperbolic monopoles

    Full text link
    The moduli spaces of hyperbolic monopoles are naturally fibred by the monopole mass, and this leads to a nontrivial mass dependence of the holomorphic data (spectral curves, rational maps, holomorphic spheres) associated to hyperbolic multi-monopoles. In this paper, we obtain an explicit description of this dependence for general hyperbolic monopoles of magnetic charge two. In addition, we show how to compute the monopole mass of higher charge spectral curves with tetrahedral and octahedral symmetries. Spectral curves of euclidean monopoles are recovered from our results via an infinite-mass limit.Comment: 43 pages, LaTeX, 3 figure

    Complexity in surfaces of densest packings for families of polyhedra

    Full text link
    Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three 2-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest packings of more than 55,000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic, Archimedean, Catalan). We find that optimal (maximum) packing density surfaces that reveal unexpected richness and complexity, containing as many as 130 different structures within a single family. Our results demonstrate the utility of thinking of shape not as a static property of an object in the context of packings, but rather as but one point in a higher dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.Comment: 16 pages, 8 figure

    SU(N) Monopoles and Platonic Symmetry

    Get PDF
    We discuss the ADHMN construction for SU(N) monopoles and show that a particular simplification arises in studying charge N-1 monopoles with minimal symmetry breaking. Using this we construct families of tetrahedrally symmetric SU(4) and SU(5) monopoles. In the moduli space approximation, the SU(4) one-parameter family describes a novel dynamics where the monopoles never separate, but rather, a tetrahedron deforms to its dual. We find a two-parameter family of SU(5) tetrahedral monopoles and compute some geodesics in this submanifold numerically. The dynamics is rich, with the monopoles scattering either once or twice through octahedrally symmetric configurations.Comment: 14pp, RevTex, two figures made of six Postscript files. To appear in the Journal of Mathematical Physic

    Nematic phases and the breaking of double symmetries

    Full text link
    In this paper we present a phase classification of (effectively) two-dimensional non-Abelian nematics, obtained using the Hopf symmetry breaking formalism. In this formalism one exploits the underlying double symmetry which treats both ordinary and topological modes on equal footing, i.e. as representations of a single (non-Abelian) Hopf symmetry. The method that exists in the literature (and is developed in a paper published in parallel) allows for a full classification of defect mediated as well as ordinary symmetry breaking patterns and a description of the resulting confinement and/or liberation phenomena. After a summary of the formalism, we determine the double symmetries for tetrahedral, octahedral and icosahedral nematics and their representations. Subsequently the breaking patterns which follow from the formation of admissible defect condensates are analyzed systematically. This leads to a host of new (quantum and classical) nematic phases. Our result consists of a listing of condensates, with the corresponding intermediate residual symmetry algebra and the symmetry algebra characterizing the effective ``low energy'' theory of surviving unconfined and liberated degrees of freedom in the broken phase. The results suggest that the formalism is applicable to a wide variety of two dimensional quantum fluids, crystals and liquid crystals.Comment: 17 pages, 2 figures, correction to table VII, updated reference

    Topological insulators and thermoelectric materials

    Full text link
    Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and thermoelectrics, and give examples of compound classes were both good thermoelectric properties and topological insulators can be found.Comment: Phys. Status Solidi RRL, accepte

    Excited state baryon spectroscopy from lattice QCD

    Full text link
    We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J = 7/2, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) x O(3) representations and a counting of levels that is consistent with the non-relativistic qqqqqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.Comment: 29 pages, 18 figure
    corecore