68 research outputs found

    A Wideband Inductorless CMOS Front-End for Software Defined

    Get PDF
    The number of wireless communication links is witnessing tremendous growth and new standards are being introduced at high pace. These standards heavily rely on digital signal processing, making CMOS the first technology of choice. However, RF CMOS circuit development is costly and time consuming due to mask costs and design iterations. This pleads for a Software Defined Radio approach, in which one piece of flexible radio hardware is re-used for different applications and standards, downloadable and under software control. To the best of our knowledge, little work has been done in this field based on CMOS technology. Recently, a bipolar downconverter front-end has been proposed [1]. In CMOS, only wideband low-noise amplifiers have been proposed, and some CMOS tuner ICs for satellite reception (which have less stringent noise requirements because they are preceded by an outdoor low-noise converter). This paper presents a wideband RF downconverter frontend in 0.18 um CMOS (also published in [2]), designed in the context of a research project exploring the feasibility of software defined radio, using a combined Bluetooth/WLAN receiver as a vehicle. Usually, RF receivers are optimised for low power consumption. In contrast, we have taken the approach to optimise for flexibility. The paper discusses the main system and circuit design choices, and assesses the achievable performance via measurements on a front-end implemented in 0.18um CMOS. The flexible design achieves a 0.2-2.2 GHz -3 dB bandwidth, a gain of 25 dB with 6 dB noise figure and +1 dBm IIP3

    LOW-POWER IMPULSE-RADIO ULTRA-WIDEBAND TECHNIQUES FOR BIOMEDICAL APPLICATIONS.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    Get PDF
    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band

    Receiver Front-End Circuits for Future Generations of Wireless Communications

    Full text link
    In this paper, new receiver concepts and CMOS circuits for future wireless communications standards are introduced. Tradeoffs between technology, performance and circuit choices of the RF front-end circuits are discussed. In particular, power consumption, noise figure and linearity trade-offs in low-noise amplifiers, mixers and oscillators are considered. The concepts derived are applied to a few classes of wireless communications standards that are broadband in nature at RF and/or require a broadband IF. Multi-mode, multi-band operation and adaptability as key requirements for future generation receivers are highlighted throughout the paper

    Linearity and Noise Improvement Techniques Employing Low Power in Analog and RF Circuits and Systems

    Get PDF
    The implementation of highly integrated multi-bands and multi-standards reconfigurable radio transceivers is one of the great challenges in the area of integrated circuit technology today. In addition the rapid market growth and high quality demands that require cheaper and smaller solutions, the technical requirements for the transceiver function of a typical wireless device are considerably multi-dimensional. The major key performance metrics facing RFIC designers are power dissipation, speed, noise, linearity, gain, and efficiency. Beside the difficulty of the circuit design due to the trade-offs and correlations that exist between these parameters, the situation becomes more and more challenging when dealing with multi-standard radio systems on a single chip and applications with different requirements on the radio software and hardware aiming at highly flexible dynamic spectrum access. In this dissertation, different solutions are proposed to improve the linearity, reduce the noise and power consumption in analog and RF circuits and systems. A system level design digital approach is proposed to compensate the harmonic distortion components produced by transmitter circuits’ nonlinearities. The approach relies on polyphase multipath scheme uses digital baseband phase rotation pre-distortion aiming at increasing harmonic cancellation and power consumption reduction over other reported techniques. New low power design techniques to enhance the noise and linearity of the receiver front-end LNA are also presented. The two proposed LNAs are fully differential and have a common-gate capacitive cross-coupled topology. The proposed LNAs avoids the use of bulky inductors that leads to area and cost saving. Prototypes are implemented in IBM 90 nm CMOS technology for the two LNAs. The first LNA covers the frequency range of 100 MHz to 1.77 GHz consuming 2.8 mW from a 2 V supply. Measurements show a gain of 23 dB with a 3-dB bandwidth of 1.76 GHz. The minimum NF is 1.85 dB while the input return loss is greater than 10 dB across the entire band. The second LNA covers the frequency range of 100 MHz to 1.6 GHz. A 6 dBm third-order input intercept point, IIP3, is measured at the maximum gain frequency. The core consumes low power of 1.55 mW using a 1.8 V supply. The measured voltage gain is 15.5 dB with a 3-dB bandwidth of 1.6 GHz. The LNA has a minimum NF of 3 dB across the whole band while achieving an input return loss greater than 12 dB. Finally, A CMOS single supply operational transconductance amplifier (OTA) is reported. It has high power supply rejection capabilities over the entire gain bandwidth (GBW). The OTA is fabricated on the AMI 0.5 um CMOS process. Measurements show power supply rejection ratio (PSRR) of 120 dB till 10 KHz. At 10 MHz, PSRR is 40 dB. The high performance PSRR is achieved using a high impedance current source and two noise reduction techniques. The OTA offers a very low current consumption of 25 uA from a 3.3 V supply

    Configurable circuits and their impact on multi-standard RF front-end architectures

    Get PDF
    This thesis studies configurable circuits and their impact on multi-standard RF front-end architectures. In particular, low-voltage low-power linear LNA and mixer topologies suitable for implementation in multi-standard front-ends are subject of the investigation. With respect to frequency and bandwidth, multi-standard front-ends can be implemented using either tunable or wideband LNA and mixer topologies. Based on the type of the LNA and mixer(s), multi-standard receiver RF front-ends can be divided into three groups. They can be (tunable) narrow-band, wide-band or combined. The advantages and disadvantages of the different multi-standard receiver RF front-ends have been discussed in detail. The partitioning between off-chip selectivity, on-chip selectivity provided by the LNA and mixer, linearity, power consumption and occupied chip area in each multi-standard RF front-end group are thoroughly investigated. A Figure of Merit (FOM) for the multi-standard receiver RF front-end has been introduced. Based on this FOM the most suitable multi-standard RF front-end group in terms of cost-effectiveness can be selected. In order to determine which multi-standard RF front-end group is the most cost-effective for a practical application, a GSM850/E-GSM/DCS/PCS/Bluetooth/WLANa/b/g multi-standard receiver RF front-end is chosen as a demonstrator. These standards are the most frequently used standards in wireless communication, and this combination of standards allows to users almost "anytime-anywhere" voice and data transfer. In order to verify these results, three demonstrators have been defined, designed and implemented, two wideband RF front-end circuits in 90nm CMOS and 65nm CMOS, and one combined multi-standard RF front-end circuit in 65nm CMOS. The proposed multi-standard demonstrators have been compared with the state-of the art narrow-band, wide-band and combined multi-standard RF front-ends. On the proposed multi-standard RF front-ends and the state-of the art multi-standard RF front-ends the proposed FOM have been applied. The comparison shows that the combined multi-standard RF front-end group is the most cost effective multi-standard group for this application

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    A Fully Integrated CMOS Receiver.

    Full text link
    The rapidly growing wireless communication market is creating an increasing demand for low-cost highly-integrated radio frequency (RF) communication systems. This dissertation focuses on techniques to enable fully-integrated, wireless receivers incorporating all passive components, including the antenna, and also incorporating baseband synchronization on-chip. Not only is the receiver small in size and requires very low power, but it also delivers synchronized demodulated data. This research targets applications such as implantable neuroprosthetic devices and environmental wireless sensors, which need short range, low data-rate wireless communications but a long lifetime. To achieve these goals, the super-regenerative architecture is used, since power consumption with this architecture is low due to the simplified receiver architecture. This dissertation presents a 5GHz single chip receiver incorporating a compact on-chip 5 GHz slot antenna (50 times smaller than traditional dipole antennas) and a digital received data synchronization. A compact capacitively-loaded 5 GHz standing-wave resonator is used to improve the energy efficiency. An all-digital PLL timing scheme synchronizes the received data clock. A new type of low-power envelope detector is incorporated to increase the data rate and efficiency. The receiver achieves a data rate up to 1.2 Mb/s, dissipates 6.6 mW from a 1.5 V supply. The novel on-chip capacitively-loaded, transmission-line-standing-wave resonator is employed instead of a conventional low-Q on-chip inductor. The simulated quality factor of the resonator is very high (35), and is verified by phase-noise measurements of a prototype 5GHz Voltage Control Oscillator (VCO) incorporating this resonator. The prototype VCO, implemented in 0.13 µm CMOS, dissipates 3 mW from a 1.2 V supply, and achieves a measured phase noise of -117 dBc/Hz at a 1 MHz offset. In the on-chip antenna an efficient shielding technique is used to shield the antenna from the low-resistivity substrate underneath. Two standalone on-chip slot antenna prototypes were designed and fabricated in 0.13 µm CMOS. The 9 GHz prototype occupies a die area of only 0.3 mm2, has an active gain of -4.4 dBi and an efficiency of 9%. The second prototype occupies a die area of 0.47 mm2, and achieves a passive gain of approximately -17.0 dBi at 5 GHz.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60739/1/shid_1.pd
    corecore