180 research outputs found

    The Sketch of a Polymorphic Symphony

    Full text link
    In previous work, we have introduced functional strategies, that is, first-class generic functions that can traverse into terms of any type while mixing uniform and type-specific behaviour. In the present paper, we give a detailed description of one particular Haskell-based model of functional strategies. This model is characterised as follows. Firstly, we employ first-class polymorphism as a form of second-order polymorphism as for the mere types of functional strategies. Secondly, we use an encoding scheme of run-time type case for mixing uniform and type-specific behaviour. Thirdly, we base all traversal on a fundamental combinator for folding over constructor applications. Using this model, we capture common strategic traversal schemes in a highly parameterised style. We study two original forms of parameterisation. Firstly, we design parameters for the specific control-flow, data-flow and traversal characteristics of more concrete traversal schemes. Secondly, we use overloading to postpone commitment to a specific type scheme of traversal. The resulting portfolio of traversal schemes can be regarded as a challenging benchmark for setups for typed generic programming. The way we develop the model and the suite of traversal schemes, it becomes clear that parameterised + typed strategic programming is best viewed as a potent combination of certain bits of parametric, intensional, polytypic, and ad-hoc polymorphism

    Fibrational induction rules for initial algebras

    Get PDF
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set

    The Rooster and the Syntactic Bracket

    Get PDF
    We propose an extension of pure type systems with an algebraic presentation of inductive and co-inductive type families with proper indices. This type theory supports coercions toward from smaller sorts to bigger sorts via explicit type construction, as well as impredicative sorts. Type families in impredicative sorts are constructed with a bracketing operation. The necessary restrictions of pattern-matching from impredicative sorts to types are confined to the bracketing construct. This type theory gives an alternative presentation to the calculus of inductive constructions on which the Coq proof assistant is an implementation.Comment: To appear in the proceedings of the 19th International Conference on Types for Proofs and Program

    Fibrational Induction Rules for Initial Algebras

    Get PDF
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, definite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set

    Generic Fibrational Induction

    Full text link
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs' elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, a sound induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of a particular syntactic form. We establish the soundness of our generic induction rule by reducing induction to iteration. We then show how our generic induction rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The first of these lies outside the scope of Hermida and Jacobs' work because it is not polynomial, and as far as we are aware, no induction rules have been known to exist for the second and third in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.Comment: For Special Issue from CSL 201

    Mathematical Logic: Proof Theory, Constructive Mathematics

    Get PDF
    [no abstract available

    Coalgebras as Types Determined by Their Elimination Rules

    Get PDF

    Terminal semantics for codata types in intensional Martin-L\"of type theory

    Full text link
    In this work, we study the notions of relative comonad and comodule over a relative comonad, and use these notions to give a terminal coalgebra semantics for the coinductive type families of streams and of infinite triangular matrices, respectively, in intensional Martin-L\"of type theory. Our results are mechanized in the proof assistant Coq.Comment: 14 pages, ancillary files contain formalized proof in the proof assistant Coq; v2: 20 pages, title and abstract changed, give a terminal semantics for streams as well as for matrices, Coq proof files updated accordingl
    • …
    corecore