873 research outputs found

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    User Experience Enhancement on Smartphones using Wireless Communication Technologies

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박세웅.Recently, various sensors as well as wireless communication technologies such as Wi-Fi and Bluetooth Low Energy (BLE) have been equipped with smartphones. In addition, in many cases, users use a smartphone while on the move, so if a wireless communication technologies and various sensors are used for a mobile user, a better user experience can be provided. For example, when a user moves while using Wi-Fi, the user experience can be improved by providing a seamless Wi-Fi service. In addition, it is possible to provide a special service such as indoor positioning or navigation by estimating the users mobility in an indoor environment, and additional services such as location-based advertising and payment systems can also be provided. Therefore, improving the user experience by using wireless communication technology and smartphones sensors is considered to be an important research field in the future. In this dissertation, we propose three systems that can improve the user experience or convenience by usingWi-Fi, BLE, and smartphones sensors: (i) BLEND: BLE beacon-aided fast Wi-Fi handoff for smartphones, (ii) PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention, (iii) FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance. First, we propose fast handoff scheme called BLEND exploiting BLE as secondary radio. We conduct detailed analysis of the sticky client problem on commercial smartphones with experiment and close examination of Android source code. We propose BLEND, which exploits BLE modules to provide smartphones with prior knowledge of the presence and information of APs operating at 2.4 and 5 GHz Wi-Fi channels. BLEND operating with only application requires no hardware and Android source code modification of smartphones.We prototype BLEND with commercial smartphones and evaluate the performance in real environment. Our measurement results demonstrate that BLEND significantly improves throughput and video bitrate by up to 61% and 111%, compared to a commercial Android application, respectively, with negligible energy overhead. Second, we design a path estimation and localization system, termed PYLON, which is plug-and-play on Android smartphones. PYLON includes a novel landmark correction scheme that leverages real doors of indoor environments consisting of floor plan mapping, door passing time detection and correction. It operates without any user intervention. PYLON relaxes some requirements for localization systems. It does not require any modifications to hardware or software of smartphones, and the initial location of WiFi APs, BLE beacons, and users. We implement PYLON on five Android smartphones and evaluate it on two office buildings with the help of three participants to prove applicability and scalability. PYLON achieves very high floor plan mapping accuracy with a low localization error. Finally, We design a fully-automated navigation system, termed FINISH, which addresses the problems of existing previous indoor navigation systems. FINISH generates the radio map of an indoor building based on the localization system to determine the initial location of the user. FINISH relaxes some requirements for current indoor navigation systems. It does not require any human assistance to provide navigation instructions. In addition, it is plug-and-play on Android smartphones. We implement FINISH on five Android smartphones and evaluate it on five floors of an office building with the help of multiple users to prove applicability and scalability. FINISH determines the location of the user with extremely high accuracy with in one step. In summary, we propose systems that enhance the users convenience and experience by utilizing wireless infrastructures such as Wi-Fi and BLE and various smartphones sensors such as accelerometer, gyroscope, and barometer equipped in smartphones. Systems are implemented on commercial smartphones to verify the performance through experiments. As a result, systems show the excellent performance that can enhance the users experience.1 Introduction 1 1.1 Motivation 1 1.2 Overview of Existing Approaches 3 1.2.1 Wi-Fi handoff for smartphones 3 1.2.2 Indoor path estimation and localization 4 1.2.3 Indoor navigation 5 1.3 Main Contributions 7 1.3.1 BLEND: BLE Beacon-aided Fast Handoff for Smartphones 7 1.3.2 PYLON: Smartphone Based Indoor Path Estimation and Localization with Human Intervention 8 1.3.3 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 9 1.4 Organization of Dissertation 10 2 BLEND: BLE Beacon-Aided FastWi-Fi Handoff for Smartphones 11 2.1 Introduction 11 2.2 Related Work 14 2.2.1 Wi-Fi-based Handoff 14 2.2.2 WPAN-aided AP Discovery 15 2.3 Background 16 2.3.1 Handoff Procedure in IEEE 802.11 16 2.3.2 BSS Load Element in IEEE 802.11 16 2.3.3 Bluetooth Low Energy 17 2.4 Sticky Client Problem 17 2.4.1 Sticky Client Problem of Commercial Smartphone 17 2.4.2 Cause of Sticky Client Problem 20 2.5 BLEND: Proposed Scheme 21 2.5.1 Advantages and Necessities of BLE as Secondary Low-Power Radio 21 2.5.2 Overall Architecture 22 2.5.3 AP Operation 23 2.5.4 Smartphone Operation 24 2.5.5 Verification of aTH estimation 28 2.6 Performance Evaluation 30 2.6.1 Implementation and Measurement Setup 30 2.6.2 Saturated Traffic Scenario 31 2.6.3 Video Streaming Scenario 35 2.7 Summary 38 3 PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention 41 3.1 Introduction 41 3.2 Background and Related Work 44 3.2.1 Infrastructure-Based Localization 44 3.2.2 Fingerprint-Based Localization 45 3.2.3 Model-Based Localization 45 3.2.4 Dead Reckoning 46 3.2.5 Landmark-Based Localization 47 3.2.6 Simultaneous Localization and Mapping (SLAM) 47 3.3 System Overview 48 3.3.1 Notable RSSI Signature 49 3.3.2 Smartphone Operation 50 3.3.3 Server Operation 51 3.4 Path Estimation 52 3.4.1 Step Detection 52 3.4.2 Step Length Estimation 54 3.4.3 Walking Direction 54 3.4.4 Location Update 55 3.5 Landmark Correction Part 1: Virtual Room Generation 56 3.5.1 RSSI Stacking Difference 56 3.5.2 Virtual Room Generation 57 3.5.3 Virtual Graph Generation 59 3.5.4 Physical Graph Generation 60 3.6 Landmark Correction Part 2: From Floor Plan Mapping to Path Correction 60 3.6.1 Candidate Graph Generation 60 3.6.2 Backbone Node Mapping 62 3.6.3 Dead-end Node Mapping 65 3.6.4 Final Candidate Graph Selection 66 3.6.5 Door Passing Time Detection 68 3.6.6 Path Correction 70 3.7 Particle Filter 71 3.8 Performance Evaluation 73 3.8.1 Implementation and Measurement Setup 73 3.8.2 Step Detection Accuracy 77 3.8.3 Floor Plan Mapping Accuracy 77 3.8.4 Door Passing Time 78 3.8.5 Walking Direction and Localization Performance 81 3.8.6 Impact of WiFi AP and BLE Beacon Number 84 3.8.7 Impact of Walking Distance and Speed 84 3.8.8 Performance on Different Areas 87 3.9 Summary 87 4 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 91 4.1 Introduction 91 4.2 Related Work 92 4.2.1 Localization-based Navigation System 92 4.2.2 Peer-to-peer Navigation System 93 4.3 System Overview 93 4.3.1 System Architecture 93 4.3.2 An Example for Navigation 95 4.4 Level Change Detection and Floor Decision 96 4.4.1 Level Change Detection 96 4.5 Real-time navigation 97 4.5.1 Initial Floor and Location Decision 97 4.5.2 Orientation Adjustment 98 4.5.3 Shortest Path Estimation 99 4.6 Performance Evaluation 99 4.6.1 Initial Location Accuracy 99 4.6.2 Real-Time Navigation Accuracy 100 4.7 Summary 101 5 Conclusion 102 5.1 Research Contributions 102 5.2 Future Work 103 Abstract (In Korean) 118 감사의 글Docto

    Outdoor Localization Using BLE RSSI and Accessible Pedestrian Signals for the Visually Impaired at Intersections

    Get PDF
    One of the major challenges for blind and visually impaired (BVI) people is traveling safely to cross intersections on foot. Many countries are now generating audible signals at crossings for visually impaired people to help with this problem. However, these accessible pedestrian signals can result in confusion for visually impaired people as they do not know which signal must be interpreted for traveling multiple crosses in complex road architecture. To solve this problem, we propose an assistive system called CAS (Crossing Assistance System) which extends the principle of the BLE (Bluetooth Low Energy) RSSI (Received Signal Strength Indicator) signal for outdoor and indoor location tracking and overcomes the intrinsic limitation of outdoor noise to enable us to locate the user effectively. We installed the system on a real-world intersection and collected a set of data for demonstrating the feasibility of outdoor RSSI tracking in a series of two studies. In the first study, our goal was to show the feasibility of using outdoor RSSI on the localization of four zones. We used a k-nearest neighbors (kNN) method and showed it led to 99.8% accuracy. In the second study, we extended our work to a more complex setup with nine zones, evaluated both the kNN and an additional method, a Support Vector Machine (SVM) with various RSSI features for classification. We found that the SVM performed best using the RSSI average, standard deviation, median, interquartile range (IQR) of the RSSI over a 5 s window. The best method can localize people with 97.7% accuracy. We conclude this paper by discussing how our system can impact navigation for BVI users in outdoor and indoor setups and what are the implications of these findings on the design of both wearable and traffic assistive technology for blind pedestrian navigation

    iBeacon localization

    Get PDF

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum

    Full text link
    The Internet of Things (IoT) can enable smart infrastructures to provide advanced services to the users. New technological advancement can improve our everyday life, even simple tasks as a visit to the museum. In this paper, an indoor localization system is presented, to enhance the user experience in a museum. In particular, the proposed system relies on Bluetooth Low Energy (BLE) beacons proximity and localization capabilities to automatically provide the users with cultural contents related to the observed artworks. At the same time, an RSS-based technique is used to estimate the location of the visitor in the museum. An Android application is developed to estimate the distance from the exhibits and collect useful analytics regarding each visit and provide a recommendation to the users. Moreover, the application implements a simple Kalman filter in the smartphone, without the need of the Cloud, to improve localization precision and accuracy. Experimental results on distance estimation, location, and detection accuracy show that BLE beacon is a promising solution for an interactive smart museum. The proposed system has been designed to be easily extensible to the IoT technologies and its effectiveness has been evaluated through experimentation

    Intelligent Luminaire based Real-time Indoor Positioning for Assisted Living

    Full text link
    This paper presents an experimental evaluation on the accuracy of indoor localisation. The research was carried out as part of a European Union project targeting the creation of ICT solutions for older adult care. Current expectation is that advances in technology will supplement the human workforce required for older adult care, improve their quality of life and decrease healthcare expenditure. The proposed approach is implemented in the form of a configurable cyber-physical system that enables indoor localization and monitoring of older adults living at home or in residential buildings. Hardware consists of custom developed luminaires with sensing, communication and processing capabilities. They replace the existing lighting infrastructure, do not look out of place and are cost effective. The luminaires record the strength of a Bluetooth signal emitted by a wearable device equipped by the monitored user. The system's software server uses trilateration to calculate the person's location based on known luminaire placement and recorded signal strengths. However, multipath fading caused by the presence of walls, furniture and other objects introduces localisation errors. Our previous experiments showed that room-level accuracy can be achieved using software-based filtering for a stationary subject. Our current objective is to assess system accuracy in the context of a moving subject, and ascertain whether room-level localization is feasible in real time
    corecore