28,499 research outputs found

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    Data mining: a tool for detecting cyclical disturbances in supply networks.

    Get PDF
    Disturbances in supply chains may be either exogenous or endogenous. The ability automatically to detect, diagnose, and distinguish between the causes of disturbances is of prime importance to decision makers in order to avoid uncertainty. The spectral principal component analysis (SPCA) technique has been utilized to distinguish between real and rogue disturbances in a steel supply network. The data set used was collected from four different business units in the network and consists of 43 variables; each is described by 72 data points. The present paper will utilize the same data set to test an alternative approach to SPCA in detecting the disturbances. The new approach employs statistical data pre-processing, clustering, and classification learning techniques to analyse the supply network data. In particular, the incremental k-means clustering and the RULES-6 classification rule-learning algorithms, developed by the present authors’ team, have been applied to identify important patterns in the data set. Results show that the proposed approach has the capability automatically to detect and characterize network-wide cyclical disturbances and generate hypotheses about their root cause

    Incremental Perspective for Feature Selection Based on Fuzzy Rough Sets

    Get PDF
    corecore