19 research outputs found

    Robótica quirúrgica, desde los grandes asistentes hasta la nanotecnología

    Get PDF
    En este artículo se hace una revisión del desarrollo de la robótica quirúrgica empezando por los primeros robots industriales utilizados en procedimientos médicos, siguiendo con los grandes asistentes robóticos para cirugía abdominal, los mini y micro robots, sus tipos y diferentes aplicaciones, y finalmente se muestran los nano robots diseñados para aplicaciones quirúrgicas.  El objetivo es mostrar una visión general de las últimas actualizaciones en cirugía robótica y las potenciales aplicaciones de esta y de nuevas tecnologías en diferentes procedimientos quirúrgicos, además de exponer las ventajas y desventajas de los diferentes sistemas robótico

    Parasitic Motion Principle (PMP) Piezoelectric Actuators: Definition and Recent Developments

    Get PDF
    Stepping piezoelectric actuators have achieved significant improvements to satisfy the urgent demands on precision positioning with the capability of long working stroke, high accuracy and micro/nano-scale resolution, coupled with the merits of fast response and high stiffness. Among them, inchworm type, friction-inertia type, and parasitic type are three main types of stepping piezoelectric actuators. This chapter is aimed to introduce the basic definition and typical features of the parasitic motion principle (PMP), followed by summarizing the recent developments and achievements of PMP piezoelectric actuators. The emphasis of this chapter includes three key points, the structural optimization, output characteristic analysis and performance enhancement. Finally, the current existing issues and some potential research topics in the future are discussed. It is expected that this chapter can assist relevant researchers to understand the basic principle and recent development of PMP piezoelectric actuators

    Electroosmotic Soft Actuators

    Get PDF
    This dissertation details the research involved in creating the first paper-based soft actuator driven by electroosmosis. To accomplish this, research breakthroughs were made in the fields of electrokinetic pumping and device manufacturing using soft materials. Electroosmosis is an electrically induced microfluidic flow phenomenon. When an electric field is applied to the fluid, across the microchannels, electroosmotic flow occurs in the direction of the applied electric field. In this work, liquid was electroosmotically displaced within a flexible microfluidic device to actuate an elastomeric membrane. The goal of this work was to create a fully sealed fluidic actuator. It was therefore necessary to encapsulate the pumping fluid within the device, and to maximize pressure it was necessary to eliminate compliance caused by trapped gases. Electrolytic gas formation is well known to disrupt pumping in DC electroosmotic systems that use water as the pumping liquid. In this work, electrolysis was eliminated by replacing water with propylene carbonate (PC): PC was determined to be electrochemically stable up to at least 10 kV, in the absence of moisture or salt contaminants. Bubble-free electroosmotic pumping with PC was achieved within sealed miniature actuators, which could be continuously operated for at least one hour. Benchtop fabrication techniques were developed to build encapsulated fluidic actuators composed entirely of soft, flexible materials. Stretchable electrochemically stable electrodes were made using a conductive paint made by mixing carbon nanoparticles into a silicone base. High-density microchannel networks were incorporated by using paper and other flexible porous materials, instead of conventional planar replica-molded microchannels. The device was filled with pumping fluid without the use of external tubing, and then encapsulated by casting a film of elastomer over the filled reservoir to form the actuating membrane. The resulting actuators were flexible and stretchable, demonstrating significant membrane deformations (hundreds of micrometers) within seconds of applying the electric field and ability to lift large loads (tens of grams). These polymeric electroosmotic actuators are unique among electroactive polymer actuators because they are able to simultaneously generate high force as well as large stroke. It is envisioned that this research will pave the way for the creation of artificial muscles and smart shape-changing materials that can be actuated by electroosmosis

    Electropermanent magnetic connectors and actuators : devices and their application in programmable matter

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 199-206).Programmable matter is a digital material having computation, sensing, and actuation capabilities as continuous properties active over its whole extent. To make programmable matter economical to fabricate, we want to use electromagnetic direct drive, rather than clockwork, to actuate the particles. Previous attempts to fabricate small scale (below one centimeter) robotic systems with electromagnetic direct-drive have typically run into problems with insufficient force or torque, excessive power consumption and heat generation (for magnetic-drive systems), or high-voltage requirements, humidity sensitivity, and air breakdown. (for electrostatic-drive systems) The electropermanent magnet is a solid-state device whose external magnetic flux can be stably switched on and off by a discrete electrical pulse. Electropermanent magnets can provide low-power connection and actuation for programmable matter and other small-scale robotic systems. The first chapter covers the electropermanent magnet, its physics, scaling, fabrication, and our experimental device performance data. The second introduces the idea of electropermanent actuators, covers their fundamental limits and scaling, and shows prototype devices and performance measurements. The third chapter describes the smart pebbles system, which consists of 12-mm cubes that can form shapes by stochastic self-assembly and self-disassembly. The fourth chapter describes the millibot, a continuous chain of programmable matter which forms shapes by folding.by Ara Nerses Knaian.Ph.D
    corecore