105 research outputs found

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    Secure Location-Aided Routing Protocols With Wi-Fi Direct For Vehicular Ad Hoc Networks

    Get PDF
    Secure routing protocols are proposed for the vehicular ad hoc networks. The protocolsintegrate the security authentication process with the Location-Aided Routing (LAR) protocol to supportWi-Fi Direct communications between the vehicles. The methods are robust against various security threats.The security authentication process adopts a modified Diffie-Hellman key agreement protocol. The Diffie-Hellman protocol is used with a short authentication string (SAS)-based key agreement over Wi-Fi Directout-of-band communication channels. It protects the communication from any man-in-the-middle securitythreats. In particular, the security process is integrated into two LAR routing schemes, i.e., the request-zoneLAR scheme and the distance-based LAR scheme.We conduct extensive simulations with different networkparameters such as the vehicular node density, the number of the malicious nodes, and the speed of thenodes. Simulation results show that the proposed routing protocols provide superior performance in securedata delivery and average total packet delay. Also, the secure distance-based LAR protocol outperforms thesecure request-zone LAR protocol

    CGT Method of Message forwarding

    Get PDF
    In vehicular ad hoc networks (VANETs), because of the nonexistence of end-to-end connections, it is essential that nodes take advantage of connection opportunities to forward messages to make end-to-end messaging possible. Thus, it is crucial to make sure that nodes have incentives to forward messages for others, despite the fact that the routing protocols in VANETs are different from traditional end-to-end routing protocols. In this paper, stimulation of message forwarding in VANETs is concerned. This approach is based on coalitional game theory, particularly, an incentive scheme for VANETs is proposed and with this scheme, following the routing protocol is in the best interest of each node. In addition, a lightweight approach is proposed for taking the limited storage space of each node into consideration

    When Data Fly: An Open Data Trading System in Vehicular Ad Hoc Networks

    Get PDF
    Communication between vehicles and their environment (i.e., vehicle-to-everything or V2X communication) in vehicular ad hoc networks (VANETs) has become of particular importance for smart cities. However, economic challenges, such as the cost incurred by data sharing (e.g., due to power consumption), hinder the integration of data sharing in open systems into smart city applications, such as dynamic environmental zones. Moving from open data sharing to open data trading can address the economic challenges and incentivize vehicle drivers to share their data. In this context, integrating distributed ledger technology (DLT) into open systems for data trading is promising for reducing the transaction cost of payments in data trading, avoiding dependencies on third parties, and guaranteeing openness. However, because the integration of DLT conflicts with the short available communication time between fast moving objects in VANETs, it remains unclear how open data trading in VANETs using DLT should be designed to be viable. In this work, we present a system design for data trading in VANETs using DLT. We measure the required communication time for data trading between a vehicle and a roadside unit in a real scenario and estimate the associated cost. Our results show that the proposed system design is technically feasible and economically viable

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation
    corecore