3,096 research outputs found

    Cognitive Radio for Emergency Networks

    Get PDF
    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve todayâ?~B??~D?s spectrum scarcity problem by allowing a secondary user in the non-used parts of the spectrum that aactully are assigned to primary services. Cognitive Radio has to work in different frequency bands and various wireless channels and supports multimedia services. A heterogenous reconfigurable System-on-Chip (SoC) architecture is proposed to enable the evolution from the traditional software defined radio to Cognitive Radio

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Smart Chips for Smart Surroundings -- 4S

    Get PDF
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept

    WiSHFUL : enabling coordination solutions for managing heterogeneous wireless networks

    Get PDF
    The paradigm shift toward the Internet of Things results in an increasing number of wireless applications being deployed. Since many of these applications contend for the same physical medium (i.e., the unlicensed ISM bands), there is a clear need for beyond-state-of-the-art solutions that coordinate medium access across heterogeneous wireless networks. Such solutions demand fine-grained control of each device and technology, which currently requires a substantial amount of effort given that the control APIs are different on each hardware platform, technology, and operating system. In this article an open architecture is proposed that overcomes this hurdle by providing unified programming interfaces (UPIs) for monitoring and controlling heterogeneous devices and wireless networks. The UPIs enable creation and testing of advanced coordination solutions while minimizing the complexity and implementation overhead. The availability of such interfaces is also crucial for the realization of emerging software-defined networking approaches for heterogeneous wireless networks. To illustrate the use of UPIs, a showcase is presented that simultaneously changes the MAC behavior of multiple wireless technologies in order to mitigate cross-technology interference taking advantage of the enhanced monitoring and control functionality. An open source implementation of the UPIs is available for wireless researchers and developers. It currently supports multiple widely used technologies (IEEE 802.11, IEEE 802.15.4, LTE), operating systems (Linux, Windows, Contiki), and radio platforms (Atheros, Broadcom, CC2520, Xylink Zynq,), as well as advanced reconfigurable radio systems (IRIS, GNURadio, WMP, TAISC)
    corecore