3,725 research outputs found

    Cloud-efficient modelling and simulation of magnetic nano materials

    Get PDF
    Scientific simulations are rarely attempted in a cloud due to the substantial performance costs of virtualization. Considerable communication overheads, intolerable latencies, and inefficient hardware emulation are the main reasons why this emerging technology has not been fully exploited. On the other hand, the progress of computing infrastructure nowadays is strongly dependent on perspective storage medium development, where efficient micromagnetic simulations play a vital role in future memory design. This thesis addresses both these topics by merging micromagnetic simulations with the latest OpenStack cloud implementation while providing a time and costeffective alternative to expensive computing centers. However, many challenges have to be addressed before a high-performance cloud platform emerges as a solution for problems in micromagnetic research communities. First, the best solver candidate has to be selected and further improved, particularly in the parallelization and process communication domain. Second, a 3-level cloud communication hierarchy needs to be recognized and each segment adequately addressed. The required steps include breaking the VMisolation for the host’s shared memory activation, cloud network-stack tuning, optimization, and efficient communication hardware integration. The project work concludes with practical measurements and confirmation of successfully implemented simulation into an open-source cloud environment. It is achieved that the renewed Magpar solver runs for the first time in the OpenStack cloud by using ivshmem for shared memory communication. Also, extensive measurements proved the effectiveness of our solutions, yielding from sixty percent to over ten times better results than those achieved in the standard cloud.Aufgrund der erheblichen Leistungskosten der Virtualisierung werden wissenschaftliche Simulationen in einer Cloud selten versucht. BetrĂ€chtlicher Kommunikationsaufwand, erhebliche Latenzen und ineffiziente Hardwareemulation sind die HauptgrĂŒnde, warum diese aufkommende Technologie nicht vollstĂ€ndig genutzt wurde. Andererseits hĂ€ngt der Fortschritt der Computertechnologie heutzutage stark von der Entwicklung perspektivischer Speichermedien ab, bei denen effiziente mikromagnetische Simulationen eine wichtige Rolle fĂŒr die zukĂŒnftige Speichertechnologie spielen. Diese Arbeit befasst sich mit diesen beiden Themen, indem mikromagnetische Simulationen mit der neuesten OpenStack Cloud-Implementierung zusammengefĂŒhrt werden, um eine zeit- und kostengĂŒnstige Alternative zu teuren Rechenzentren bereitzustellen. Viele Herausforderungen mĂŒssen jedoch angegangen werden, bevor eine leistungsstarke Cloud-Plattform als Lösung fĂŒr Probleme in mikromagnetischen Forschungsgemeinschaften entsteht. ZunĂ€chst muss der beste Kandidat fĂŒr die Lösung ausgewĂ€hlt und weiter verbessert werden, insbesondere im Bereich der Parallelisierung und Prozesskommunikation. Zweitens muss eine 3-stufige CloudKommunikationshierarchie erkannt und jedes Segment angemessen adressiert werden. Die erforderlichen Schritte umfassen das Aufheben der VM-Isolation, um den gemeinsam genutzten Speicher zwischen Cloud-Instanzen zu aktivieren, die Optimierung des Cloud-Netzwerkstapels und die effiziente Integration von Kommunikationshardware. Die praktische Arbeit endet mit Messungen und der BestĂ€tigung einer erfolgreich implementierten Simulation in einer Open-Source Cloud-Umgebung. Als Ergebnis haben wir erreicht, dass der neu erstellte Magpar-Solver zum ersten Mal in der OpenStack Cloud ausgefĂŒhrt wird, indem ivshmem fĂŒr die Shared-Memory Kommunikation verwendet wird. Umfangreiche Messungen haben auch die Wirksamkeit unserer Lösungen bewiesen und von sechzig Prozent bis zu zehnmal besseren Ergebnissen als in der Standard Cloud gefĂŒhrt

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Continuous and Concurrent Network Connection for Hardware Virtualization

    Get PDF
    This project addresses the network connectivity in virtualization for cloud computing. Each Virtual Machine will be able to access the network concurrently and obtains continuous internet connectivity without any disruption. This project proposes a new method of resource sharing which is the Network Interface Card (NIC) among the Virtual Machines with each of them having the full access to it with near-native bandwidth. With this, could computing can perform resource allocation more effectively. This will be essential to migrate the each Operating System (Virtual Machine) that resides on one physical machine to another without disrupting its internet or network connection

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    A framework for realistic real-time walkthroughs in a VR distributed environment

    Get PDF
    Virtual and augmented reality (VR/AR) are increasingly being used in various business scenarios and are important driving forces in technology development. However the usage of these technologies in the home environment is restricted due to several factors including lack of low-cost (from the client point of view) highperformance solutions. In this paper we present a general client/server rendering architecture based on Real-Time concepts, including support for a wide range of client platforms and applications. The idea of focusing on the real-time behaviour of all components involved in distributed IP-based VR scenarios is new and has not been addressed before, except for simple sub-solutions. This is considered as “the most significant problem with the IP environment” [1]. Thus, the most important contribution of this research will be the holistic approach, in which networking, end-systems and rendering aspects are integrated into a cost-effective infrastructure for building distributed real-time VR applications on IP-based networks

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    State-of-the-Art in Parallel Computing with R

    Get PDF
    R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly useful for general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems four different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix
    • 

    corecore