5,600 research outputs found

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer

    Data Improving in Time Series Using ARX and ANN Models

    Get PDF
    Anomalous data can negatively impact energy forecasting by causing model parameters to be incorrectly estimated. This paper presents two approaches for the detection and imputation of anomalies in time series data. Autoregressive with exogenous inputs (ARX) and artificial neural network (ANN) models are used to extract the characteristics of time series. Anomalies are detected by performing hypothesis testing on the extrema of the residuals, and the anomalous data points are imputed using the ARX and ANN models. Because the anomalies affect the model coefficients, the data cleaning process is performed iteratively. The models are re-learned on “cleaner” data after an anomaly is imputed. The anomalous data are reimputed to each iteration using the updated ARX and ANN models. The ARX and ANN data cleaning models are evaluated on natural gas time series data. This paper demonstrates that the proposed approaches are able to identify and impute anomalous data points. Forecasting models learned on the unclean data and the cleaned data are tested on an uncleaned out-of-sample dataset. The forecasting model learned on the cleaned data outperforms the model learned on the unclean data with 1.67% improvement in the mean absolute percentage errors and a 32.8% improvement in the root mean squared error. Existing challenges include correctly identifying specific types of anomalies such as negative flows

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions
    corecore