27,113 research outputs found

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200

    Asymptotic improvement of the Gilbert-Varshamov bound for linear codes

    Full text link
    The Gilbert-Varshamov bound states that the maximum size A_2(n,d) of a binary code of length n and minimum distance d satisfies A_2(n,d) >= 2^n/V(n,d-1) where V(n,d) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound can be improved to A_2(n,d) >= cn2^n/V(n,d-1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n,n/2] random double circulant codes satisfy the same improved Gilbert-Varshamov bound.Comment: Submitted to IEEE Transactions on Information Theor

    Construction of Almost Disjunct Matrices for Group Testing

    Full text link
    In a \emph{group testing} scheme, a set of tests is designed to identify a small number tt of defective items among a large set (of size NN) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a \emph{disjunct matrix}, an M×NM \times N matrix where the union of supports of any tt columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number MM of rows (tests). One of the main ways of constructing disjunct matrices relies on \emph{constant weight error-correcting codes} and their \emph{minimum distance}. In this paper, we consider a relaxed definition of a disjunct matrix known as \emph{almost disjunct matrix}. This concept is also studied under the name of \emph{weakly separated design} in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the \emph{average distance} of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Our second contribution is to explicitly construct almost disjunct matrices based on our average distance analysis, that have much smaller number of rows than any previous explicit construction of disjunct matrices. The parameters of our construction can be varied to cover a large range of relations for tt and NN.Comment: 15 Page

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    An Upper Bound on the Minimum Distance of LDPC Codes over GF(q)

    Full text link
    In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). The comparison to the lower bound for LDPC codes over GF(q) and to the upper bound for non-binary codes is done. The new bound is shown to lie under the Gilbert-Varshamov bound at high rates.Comment: 4 pages, submitted to ISIT 201

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    On quadratic residue codes and hyperelliptic curves

    Full text link
    A long standing problem has been to develop "good" binary linear codes to be used for error-correction. This paper investigates in some detail an attack on this problem using a connection between quadratic residue codes and hyperelliptic curves. One question which coding theory is used to attack is: Does there exist a c<2 such that, for all sufficiently large pp and all subsets S of GF(p), we have |X_S(GF(p))| < cp?Comment: 18 pages, no figure
    corecore