42 research outputs found

    Étude et positionnement utilisant le réseau de capteur sans fil dans un environnement minier souterrain

    Get PDF
    La sécurité et la communication posent des problèmes majeurs auxquels il faut remédier dans les environnements hostiles comme les mines souterraines. Pour une communication fiable ainsi que pour tracer la position exacte d’un objet dans les mines souterraines, différentes technologies ont été déployé. Parmi ces dernières, le réseau de capteurs sans fil est considéré comme un outil prometteur pour les applications basées sur la localisation, à savoir, la surveillance des lieux, le repérage des mobiles et la navigation. En fait, les réseaux de capteur sans-fil fournissent une couverture d’une vaste gamme d’équipements fiables, efficaces, tolérants aux défaillances et évolutives. Cependant, les travaux de recherches précédents ont divisé la localisation en deux parties: les méthodes basées sur la portée et celles non-basées sur la portée. Où la première est précise et coûteuse tandis que la deuxième est présentée pour réduire la quantité d’énergie consommée du côté capteur dont les ressources sont limitées. Notre recherche se focalise sur la localisation basée sur la portée utilisant le réseau de capteurs sans fil dans les milieux internes et mines souterrains. Plusieurs techniques ont été proposées pour la localisation comme la réception de l'indicateur de force de signal (RSSI), le temps d'arrivée (TOA), la différence de temps d'arrivée (TDOA), l'angle d'arrivée (AOA). Bien que plusieurs travaux de recherches utilisant ces techniques aient été exécutés, l'approche de localisation à base de temps pour les environnements complexe comme la mine souterraine demeure limitée. Cette thèse offre de nouvelles solutions pour combler l’écart entre la localisation à base de temps et le réseau de capteurs sans fil à haute précision, pour l’environnement minier souterrain. De plus, nous avons utilisé une technologie émergente, à savoir les communications ultra-large bande, pour booster la performance et l'exactitude. Notre travail de recherche est subdivisé en deux principales parties : une partie simulation et une partie pratique. Dans la première, nous avons utilisé MATLAB pour faire les différentes simulations. La deuxième partie consiste en plusieurs mesures pratiques réalisées dans un environnement intérieur ainsi que dans une mine souterraine. Les résultats montrent une amélioration remarquable et une meilleure précision de la technique UWB à base de temps

    Optimising mobile laser scanning for underground mines

    Full text link
    Despite several technological advancements, underground mines are still largely relied on visual inspections or discretely placed direct-contact measurement sensors for routine monitoring. Such approaches are manual and often yield inconclusive, unreliable and unscalable results besides exposing mine personnel to field hazards. Mobile laser scanning (MLS) promises an automated approach that can generate comprehensive information by accurately capturing large-scale 3D data. Currently, the application of MLS has relatively remained limited in mining due to challenges in the post-registration of scans and the unavailability of suitable processing algorithms to provide a fully automated mapping solution. Additionally, constraints such as the absence of a spatial positioning network and the deficiency of distinguishable features in underground mining spaces pose challenges in mobile mapping. This thesis aims to address these challenges in mine inspections by optimising different aspects of MLS: (1) collection of large-scale registered point cloud scans of underground environments, (2) geological mapping of structural discontinuities, and (3) inspection of structural support features. Firstly, a spatial positioning network was designed using novel three-dimensional unique identifiers (3DUID) tags and a 3D registration workflow (3DReG), to accurately obtain georeferenced and coregistered point cloud scans, enabling multi-temporal mapping. Secondly, two fully automated methods were developed for mapping structural discontinuities from point cloud scans – clustering on local point descriptors (CLPD) and amplitude and phase decomposition (APD). These methods were tested on both surface and underground rock mass for discontinuity characterisation and kinematic analysis of the failure types. The developed algorithms significantly outperformed existing approaches, including the conventional method of compass and tape measurements. Finally, different machine learning approaches were used to automate the recognition of structural support features, i.e. roof bolts from point clouds, in a computationally efficient manner. Roof bolts being mapped from a scanned point cloud provided an insight into their installation pattern, which underpinned the applicability of laser scanning to inspect roof supports rapidly. Overall, the outcomes of this study lead to reduced human involvement in field assessments of underground mines using MLS, demonstrating its potential for routine multi-temporal monitoring

    Optimization of anchor nodes placement in wireless localization networks

    Get PDF
    This work focuses on optimizing node placement for time-of-flight-based wireless localization networks. Main motivation are critical safety applications. The first part of my thesis is an experimental study on in-tunnel vehicle localization. In- tunnel localization of vehicles is crucial for emergency management, especially for large trucks transporting dangerous goods such as inflammable chemicals. Compared to open roads, evacuation in tunnels is much more difficult, so that fire or other accidents can cause much more damage. We provide distance measurement error characterization inside road tunnels focusing on time of flight measurements. We design a complete system for in-tunnel radio frequency time-of- flight-based localization and show that such a system is feasible and accurate, and that few nodes are sufficient to cover the entire tunnel. The second part of my work focuses on anchor nodes placement optimization for time-of-flight-based localization networks where multilateration is used to obtain the target position based on its distances from fixed and known anchors. Our main motivation are safety at work applications, in particular, environments such as factory halls. Our goal is to minimize the number of anchors needed to localize the target while keeping the localization uncertainty lower than a given threshold in an area of arbitrary shape with obstacles. Our propagation model accounts for the presence of line of sight between nodes, while geometric dilution of precision is used to express the localization error introduced by multilateration. We propose several integer linear programming formulations for this problem that can be used to obtain optimal solutions to instances of reasonable sizes and compare them in terms of execution times by simulation experiments. We extend our approach to address fault tolerance, ensuring that the target can still be localized after any one of the nodes fails. Two dimensional localization is sufficient for most indoor applications. However, for those industrial environments where the ceiling is very high and the worker might be climbing or be lifted from the ground, or if very high localization precision is needed, three-dimensional localization may be required. Therefore, we extend our approach to three-dimensional localization. We derive the expression for geometric dilution of precision for 3D multilateration and give its geometric interpretation. To tackle problem instances of large size, we propose two novel heuristics: greedy placement with pruning, and its improved version, greedy placement with iterative pruning. We create a simulator to test and compare all our proposed approaches by generating multiple test instances. For anchor placement for multilateration-based localization, we obtain solutions with below 2% anchors overhead with respect to the optimum on average, with around 5s average execution time for 130 candidate positions. For the fault-tolerant version of the same problem, we obtain solutions of around 1% number of anchors overhead with respect to the optimum on average, with 0.4s execution time for 65 candidate positions, by using greedy heuristic with pruning. For 3D placement, the greedy heuristic with iterative pruning produced results of 0.05% of optimum on average, with average execution time of around 6s for 250 candidate positions, for the problem instances we tested

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Geospatial Computing: Architectures and Algorithms for Mapping Applications

    Get PDF
    Beginning with the MapTube website (1), which was launched in 2007 for crowd-sourcing maps, this project investigates approaches to exploratory Geographic Information Systems (GIS) using web-based mapping, or ‘web GIS’. Users can log in to upload their own maps and overlay different layers of GIS data sets. This work looks into the theory behind how web-based mapping systems function and whether their performance can be modelled and predicted. One of the important questions when dealing with different geospatial data sets is how they relate to one another. Internet data stores provide another source of information, which can be exploited if more generic geospatial data mining techniques are developed. The identification of similarities between thousands of maps is a GIS technique that can give structure to the overall fabric of the data, once the problems of scalability and comparisons between different geographies are solved. After running MapTube for nine years to crowd-source data, this would mark a natural progression from visualisation of individual maps to wider questions about what additional knowledge can be discovered from the data collected. In the new ‘data science’ age, the introduction of real-time data sets introduces a new challenge for web-based mapping applications. The mapping of real-time geospatial systems is technically challenging, but has the potential to show inter-dependencies as they emerge in the time series. Combined geospatial and temporal data mining of realtime sources can provide archives of transport and environmental data from which to accurately model the systems under investigation. By using techniques from machine learning, the models can be built directly from the real-time data stream. These models can then be used for analysis and experimentation, being derived directly from city data. This then leads to an analysis of the behaviours of the interacting systems. (1) The MapTube website: http://www.maptube.org

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Data and the city – accessibility and openness. a cybersalon paper on open data

    Get PDF
    This paper showcases examples of bottom–up open data and smart city applications and identifies lessons for future such efforts. Examples include Changify, a neighbourhood-based platform for residents, businesses, and companies; Open Sensors, which provides APIs to help businesses, startups, and individuals develop applications for the Internet of Things; and Cybersalon’s Hackney Treasures. a location-based mobile app that uses Wikipedia entries geolocated in Hackney borough to map notable local residents. Other experiments with sensors and open data by Cybersalon members include Ilze Black and Nanda Khaorapapong's The Breather, a "breathing" balloon that uses high-end, sophisticated sensors to make air quality visible; and James Moulding's AirPublic, which measures pollution levels. Based on Cybersalon's experience to date, getting data to the people is difficult, circuitous, and slow, requiring an intricate process of leadership, public relations, and perseverance. Although there are myriad tools and initiatives, there is no one solution for the actual transfer of that data
    corecore