337 research outputs found

    Image-Based Malware Classification with Convolutional Neural Networks and Extreme Learning Machines

    Get PDF
    Research in the field of malware classification often relies on machine learning models that are trained on high level features, such as opcodes, function calls, and control flow graphs. Extracting such features is costly, since disassembly or code execution is generally required. In this research, we conduct experiments to train and evaluate machine learning models for malware classification, based on features that can be obtained without disassembly or execution of code. Specifically, we visualize malware samples as images and employ image analysis techniques. In this context, we focus on two machine learning models, namely, Convolutional Neural Networks (CNN) and Extreme Learning Machines (ELM). Surprisingly, we find that ELMs can yield comparable results to CNNs, yet ELMs are far more efficient to train

    Deep Learning Methods for Malware and Intrusion Detection: A Systematic Literature Review

    Get PDF
    Android and Windows are the predominant operating systems used in mobile environment and personal computers and it is expected that their use will rise during the next decade. Malware is one of the main threats faced by these platforms as well as Internet of Things (IoT) environment and the web. With time, these threats are becoming more and more sophisticated and detecting them using traditional machine learning techniques is a hard task. Several research studies have shown that deep learning methods achieve better accuracy comparatively and can learn to efficiently detect and classify new malware samples. In this paper, we present a systematic literature review of the recent studies that focused on intrusion and malware detection and their classification in various environments using deep learning techniques. We searched five well-known digital libraries and collected a total of 107 papers that were published in scholarly journals or preprints. We carefully read the selected literature and critically analyze it to find out which types of threats and what platform the researchers are targeting and how accurately the deep learning-based systems can detect new security threats. This survey will have a positive impact on the learning capabilities of beginners who are interested in starting their research in the area of malware detection using deep learning methods. From the detailed critical analysis, it is identified that CNN, LSTM, DBN, and autoencoders are the most frequently used deep learning methods that have effectively been used in various application scenarios

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table

    Deep-IFS:Intrusion Detection Approach for Industrial Internet of Things Traffic in Fog Environment

    Get PDF
    The extensive propagation of industrial Internet of Things (IIoT) technologies has encouraged intruders to initiate a variety of attacks that need to be identified to maintain the security of end-user data and the safety of services offered by service providers. Deep learning (DL), especially recurrent approaches, has been applied successfully to the analysis of IIoT forensics but their key challenge of recurrent DL models is that they struggle with long traffic sequences and cannot be parallelized. Multihead attention (MHA) tried to address this shortfall but failed to capture the local representation of IIoT traffic sequences. In this article, we propose a forensics-based DL model (called Deep-IFS) to identify intrusions in IIoT traffic. The model learns local representations using local gated recurrent unit (LocalGRU), and introduces an MHA layer to capture and learn global representation (i.e., long-range dependencies). A residual connection between layers is designed to prevent information loss. Another challenge facing the current IIoT forensics frameworks is their limited scalability, limiting performance in handling Big IIoT traffic data produced by IIoT devices. This challenge is addressed by deploying and training the proposed Deep-IFS in a fog computing environment. The intrusion identification becomes scalable by distributing the computation and the IIoT traffic data across worker fog nodes for training the model. The master fog node is responsible for sharing training parameters and aggregating worker node output. The aggregated classification output is subsequently passed to the cloud platform for mitigating attacks. Empirical results on the Bot-IIoT dataset demonstrate that the developed distributed Deep-IFS can effectively handle Big IIoT traffic data compared with the present centralized DL-based forensics techniques. Further, the results validate the robustness of the proposed Deep-IFS across various evaluation measures

    An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications

    Get PDF
    The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier—Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 × 32 × 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques

    Malware Resistant Data Protection in Hyper-connected Networks: A survey

    Full text link
    Data protection is the process of securing sensitive information from being corrupted, compromised, or lost. A hyperconnected network, on the other hand, is a computer networking trend in which communication occurs over a network. However, what about malware. Malware is malicious software meant to penetrate private data, threaten a computer system, or gain unauthorised network access without the users consent. Due to the increasing applications of computers and dependency on electronically saved private data, malware attacks on sensitive information have become a dangerous issue for individuals and organizations across the world. Hence, malware defense is critical for keeping our computer systems and data protected. Many recent survey articles have focused on either malware detection systems or single attacking strategies variously. To the best of our knowledge, no survey paper demonstrates malware attack patterns and defense strategies combinedly. Through this survey, this paper aims to address this issue by merging diverse malicious attack patterns and machine learning (ML) based detection models for modern and sophisticated malware. In doing so, we focus on the taxonomy of malware attack patterns based on four fundamental dimensions the primary goal of the attack, method of attack, targeted exposure and execution process, and types of malware that perform each attack. Detailed information on malware analysis approaches is also investigated. In addition, existing malware detection techniques employing feature extraction and ML algorithms are discussed extensively. Finally, it discusses research difficulties and unsolved problems, including future research directions.Comment: 30 pages, 9 figures, 7 tables, no where submitted ye
    • …
    corecore