13,597 research outputs found

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    Optimizing energy efficiency of CNN-based object detection with dynamic voltage and frequency scaling

    Get PDF
    On the one hand, accelerating convolution neural networks (CNNs) on FPGAs requires ever increasing high energy efficiency in the edge computing paradigm. On the other hand, unlike normal digital algorithms, CNNs maintain their high robustness even with limited timing errors. By taking advantage of this unique feature, we propose to use dynamic voltage and frequency scaling (DVFS) to further optimize the energy efficiency for CNNs. First, we have developed a DVFS framework on FPGAs. Second, we apply the DVFS to SkyNet, a state-of-the-art neural network targeting on object detection. Third, we analyze the impact of DVFS on CNNs in terms of performance, power, energy efficiency and accuracy. Compared to the state-of-the-art, experimental results show that we have achieved 38% improvement in energy efficiency without any loss in accuracy. Results also show that we can achieve 47% improvement in energy efficiency if we allow 0.11% relaxation in accuracy

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Timing error detection and correction for power efficiency: an aggressive scaling approach

    Get PDF
    Low-power consumption has become an important aspect of processors and systems design. Many techniques ranging from architectural to system level are available. Voltage scaling or frequency boosting methods are the most effective to achieve low-power consumption as the dynamic power is proportional to the frequency and to the square of the supply voltage. The basic principle of operation of aggressive voltage scaling is to adjust the supply voltage to the lowest level possible to achieve minimum power consumption while maintaining reliable operations. Similarly, aggressive frequency boosting is to alter the operating frequency to achieve optimum performance improvement. In this study, an aggressive technique which employs voltage or frequency varying hardware circuit with the time-borrowing feature is presented. The proposed technique double samples the data to detect any timing violations as the frequency/voltage is scaled. The detected violations are masked by phase delaying the flip-flop clock to capture the late arrival data. This makes the system timing error tolerant without incurring error correction timing penalty. The proposed technique is implemented in a field programmable gate array using a two-stage arithmetic pipeline. Results on various benchmarks clearly demonstrate the achieved power savings and performance improvement.N/

    Embracing Low-Power Systems with Improvement in Security and Energy-Efficiency

    Get PDF
    As the economies around the world are aligning more towards usage of computing systems, the global energy demand for computing is increasing rapidly. Additionally, the boom in AI based applications and services has already invited the pervasion of specialized computing hardware architectures for AI (accelerators). A big chunk of research in the industry and academia is being focused on providing energy efficiency to all kinds of power hungry computing architectures. This dissertation adds to these efforts. Aggressive voltage underscaling of chips is one the effective low power paradigms of providing energy efficiency. This dissertation identifies and deals with the reliability and performance problems associated with this paradigm and innovates novel energy efficient approaches. Specifically, the properties of a low power security primitive have been improved and, higher performance has been unlocked in an AI accelerator (Google TPU) in an aggressively voltage underscaled environment. And, novel power saving opportunities have been unlocked by characterizing the usage pattern of a baseline TPU with rigorous mathematical analysis
    • …
    corecore