21 research outputs found

    Real-time online fingerprint image classification using adaptive hybrid techniques

    Get PDF
    This paper presents three different hybrid classification techniques applied for the first time in real-time online fingerprint classification. Classification of online real time fingerprints is a complex task as it involves adaptation and tuning of classifier parameters for better classification accuracy. To accomplish the optimal adaptation of parameters of functional link artificial neural network (FLANN) for real-time online fingerprint classification, proven and established optimizers, such as Biogeography based optimizer (BBO), Genetic algorithm (GA), and Particle swarm optimizer (PSO) are intelligently infused with it to form hybrid classifiers. The global features of the real-time fingerprints are extracted using a Gabor filter-bank and then passed into adaptive hybrid classifiers for the desired classification as per the Henry system. Three hybrid classifiers, the optimized weight adapted Biogeography based optimized functional link artificial neural network (BBO-FLANN), Genetic algorithm based functional link artificial neural network (GA-FLANN) and Particle swarm optimized functional link artificial neural network (PSO-FLANN), are explored for real-time online fingerprint classification, where the PSO-FLANN technique  is showing superior performance as compared to GA-FLANN and BBO-FLANN techniques. The best accuracy observed by the application of PSO-FLANN, is 98% for real-time online fingerprint classification

    Electroencephalogram Signalling diagnosis using Softcomputing

    Get PDF
    The two most frightening things for the researchers in clinical signal processing and computer aided diagnosis are noise and relativity of human judgment. The researchers made effort to overcome these two challenges by using various soft computing approaches. In this article the present benefits of these approaches in the accomplishment of the analysis of electroencephalogram (EEG) is acknowledge. There is also the presentation of the significance of several trend and prospects of further softcomputing methods that can produce better results in signal processing of EEG. Medical experts apply the different softcomputing techniques for disease diagnoses and decision making systems performed on brain actions and modeling of neural impulses of the human encephalon

    Classification of medical datasets using back propagation neural network powered by genetic-based features elector

    Get PDF
    The classification is a one of the most indispensable domains in   the data mining and machine learning. The classification process has a good reputation in the area of diseases diagnosis by computer systems where the progress in smart technologies of computer can be invested in diagnosing various diseases based on data of real patients documented in databases. The paper introduced a methodology for diagnosing a set of diseases including two types of cancer (breast cancer and lung), two datasets for diabetes and heart attack. Back Propagation Neural Network plays the role of classifier. The performance of neural net is enhanced by using the genetic algorithm which provides the classifier with the optimal features to raise the classification rate to the highest possible. The system showed high efficiency in dealing with databases differs from each other in size, number of features and nature of the data and this is what the results illustrated, where the ratio of the classification reached to 100% in most datasets)

    Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network

    Get PDF
    The cognitive radio (CR) is evolved as the promising technology to alleviate the spectrum scarcity issues by allowing the secondary users (SUs) to use the licensed band in an opportunistic manner. Various challenges need to be addressed before the successful deployment of CR technology. This thesis work presents intelligent resource allocation techniques for improving energy efficiency (EE) of low battery powered CR nodes where resources refer to certain important parameters that directly or indirectly affect EE. As far as the primary user (PU) is concerned, the SUs are allowed to transmit on the licensed band until their transmission power would not cause any interference to the primary network. Also, the SUs must use the licensed band efficiently during the PU’s absence. Therefore, the two key factors such as protection to the primary network and throughput above the threshold are important from the PU’s and SUs’ perspective, respectively. In deployment of CR, malicious users may be more active to prevent the CR users from accessing the spectrum or cause unnecessary interference to the both primary and secondary transmission. Considering these aspects, this thesis focuses on developing novel approaches for energy-efficient resource allocation under the constraints of interference to the PR, minimum achievable data rate and maximum transmission power by optimizing the resource parameters such as sensing time and the secondary transmission power with suitably selecting SUs. Two different domains considered in this thesis are the soft decision fusion (SDF)-based cooperative spectrum sensing CR network (CRN) models without and with the primary user emulation attack (PUEA). An efficient iterative algorithm called iterative Dinkelbach method (IDM) is proposed to maximize EE with suitable SUs in the absence of the attacker. In the proposed approaches, different constraints are evaluated considering the negative impact of the PUE attacker on the secondary transmission while maximizing EE with the PUE attacker. The optimization problem associated with the non-convex constraints is solved by our proposed iterative resource allocation algorithms (novel iterative resource allocation (NIRA) and novel adaptive resource allocation (NARA)) with suitable selection of SUs for jointly optimizing the sensing time and power allocation. In the CR enhanced vehicular ad hoc network (CR-VANET), the time varying channel responses with the vehicular movement are considered without and with the attacker. In the absence of the PUE attacker, an interference-aware power allocation scheme based on normalized least mean square (NLMS) algorithm is proposed to maximize EE considering the dynamic constraints. In the presence of the attacker, the optimization problem associated with the non-convex and time-varying constraints is solved by an efficient approach based on genetic algorithm (GA). Further, an investigation is attempted to apply the CR technology in industrial, scientific and medical (ISM) band through spectrum occupancy prediction, sub-band selection and optimal power allocation to the CR users using the real time indoor measurement data. Efficacies of the proposed approaches are verified through extensive simulation studies in the MATLAB environment and by comparing with the existing literature. Further, the impacts of different network parameters on the system performance are analyzed in detail. The proposed approaches will be highly helpful in designing energy-efficient CRN model with low complexity for future CR deployment

    The Utilisiation of composite Machine Learning models for the Classification of Medical Datasets For Sickle Cell Disease

    Get PDF
    The increase growth of health information systems has provided a significant way to deliver great change in medical domains. Up to this date, the majority of medical centres and hospitals continue to use manual approaches for determining the correct medication dosage for sickle cell disease. Such methods depend completely on the experience of medical consultants to determine accurate medication dosages, which can be slow to analyse, time consuming and stressful. The aim of this paper is to provide a robust approach to various applications of machine learning in medical domain problems. The initial case study addressed in this paper considers the classification of medication dosage levels for the treatment of sickle cell disease. This study base on different architectures of machine learning in order to maximise accuracy and performance. The leading motivation for such automated dosage analysis is to enable healthcare organisations to provide accurate therapy recommendations based on previous data. The results obtained from a range of models during our experiments have shown that a composite model, comprising a Neural Network learner, trained using the Levenberg-Marquardt algorithm, combined with a Random Forest learner, produced the best results when compared to other models with an Area under the Curve of 0.995

    An Extensive Analysis of Machine Learning Based Boosting Algorithms for Software Maintainability Prediction

    Get PDF
    Software Maintainability is an indispensable factor to acclaim for the quality of particular software. It describes the ease to perform several maintenance activities to make a software adaptable to the modified environment. The availability & growing popularity of a wide range of Machine Learning (ML) algorithms for data analysis further provides the motivation for predicting this maintainability. However, an extensive analysis & comparison of various ML based Boosting Algorithms (BAs) for Software Maintainability Prediction (SMP) has not been made yet. Therefore, the current study analyzes and compares five different BAs, i.e., AdaBoost, GBM, XGB, LightGBM, and CatBoost, for SMP using open-source datasets. Performance of the propounded prediction models has been evaluated using Root Mean Square Error (RMSE), Mean Magnitude of Relative Error (MMRE), Pred(0.25), Pred(0.30), & Pred(0.75) as prediction accuracy measures followed by a non-parametric statistical test and a post hoc analysis to account for the differences in the performances of various BAs. Based on the residual errors obtained, it was observed that GBM is the best performer, followed by LightGBM for RMSE, whereas, in the case of MMRE, XGB performed the best for six out of the seven datasets, i.e., for 85.71% of the total datasets by providing minimum values for MMRE, ranging from 0.90 to 3.82. Further, on applying the statistical test and on performing the post hoc analysis, it was found that significant differences exist in the performance of different BAs and, XGB and CatBoost outperformed all other BAs for MMRE. Lastly, a comparison of BAs with four other ML algorithms has also been made to bring out BAs superiority over other algorithms. This study would open new doors for the software developers for carrying out comparatively more precise predictions well in time and hence reduce the overall maintenance costs

    Advanced of Mathematics-Statistics Methods to Radar Calibration for Rainfall Estimation; A Review

    Get PDF
    Ground-based radar is known as one of the most important systems for precipitation measurement at high spatial and temporal resolutions. Radar data are recorded in digital manner and readily ingested to any statistical analyses. These measurements are subjected to specific calibration to eliminate systematic errors as well as minimizing the random errors, respectively. Since statistical methods are based on mathematics, they offer more precise results and easy interpretation with lower data detail. Although they have challenge to interpret due to their mathematical structure, but the accuracy of the conclusions and the interpretation of the output are appropriate. This article reviews the advanced methods in using the calibration of ground-based radar for forecasting meteorological events include two aspects: statistical techniques and data mining. Statistical techniques refer to empirical analyses such as regression, while data mining includes the Artificial Neural Network (ANN), data Kriging, Nearest Neighbour (NN), Decision Tree (DT) and fuzzy logic. The results show that Kriging is more applicable for interpolation. Regression methods are simple to use and data mining based on Artificial Intelligence is very precise. Thus, this review explores the characteristics of the statistical parameters in the field of radar applications and shows which parameters give the best results for undefined cases. DOI: 10.17762/ijritcc2321-8169.15012

    Paramos sistema investuotojui valiutų rinkoje

    Get PDF
    Disertacijoje nagrinėjamos investavimo valiutų rinkoje, naudojant dirbtinį intelektą, galimybes. Literatūros analizė atskleidė, kad vienu metu pasaulyje formavosi dvi skirtingos mokslinių tyrimų kryptys: universalioji dirbtinio intelekto teorija ir investicijų teorija. Pirmoji kryptis turėjo įtakos universalios prognozės galimybės teorijos atsiradimui, tai lėmė įvairių dirbtinio intelekto algoritmų ir jų sistemų sukūrimą. Antroji kryptis vystėsi kartu su racionalaus numatymo teorija, kuri padėjo pagrindus moderniosios portfelio teorijos atsiradimui. Šiame darbe siekiama susieti šias dvi mokslines kryptis valiutų rinkos prognozavimui. Pagrindinis disertacijos tikslas – sukurti investicinių sprendimų priėmimo paramos sistemą investuotojui valiutų rinkoje tikslingai pritaikant dirbtinio intelekto algoritmus ir moderniąją portfelio teoriją. Darbe sprendžiami pagrindiniai uždaviniai: suformuoti valiutų rinkos prognozavimo modelį dirbtinio intelekto algoritmų pagrindu, integruoti investicinio portfelio optimizavimo principus į prognozavimo modelį, empiriškai aprobuoti modelio efektyvumą ir patikimumą investuojant valiutų rinkoje. Finansų rinkų prognozavimui tikslingai pritaikius dirbtinio intelekto algoritmus ir į juos integravus moderniąją portfelio teoriją, sukurta patikima ir efektyvi paramos sistema investuotojui. Disertaciją sudaro įvadas, trys skyriai, bendrosios išvados, naudotos literatūros ir autoriaus publikacijų sąrašai. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojami darbo tikslas ir uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo praktinė reikšmė, ginamieji teiginiai. Pirmasis skyrius skirtas literatūros analizei, jame pateikti finansų rinkų būties ypatumai, procesų analizė, valdymo ir reguliavimo aspektai globalioje ekonomikoje, prognozavimo dirbtinio intelekto sistemomis analizė bei investicinių portfelių formavimo strategijų analizė. Antrajame skyriuje teikiamos teorinės dirbtinio intelekto sukūrimo prielaidos, Evolino RNN pritaikymo produktyviam sprendimui teoriniai pagrindai, investicinio portfelio teorijos principų taikymo galimybės. Trečiajame skyriuje pateikiama prognozavimo modelių architektūra, įvertinamas jų patikimumas. Atsižvelgiant į pelningumą ir rizikingumą, lyginamos įvairios investavimo strategijos. Disertacijos tema paskelbti 4 straipsniai: 2 – ISI Web of Science žurnaluose, 2 – kituose recenzuojamuose žurnaluose. Perskaityti 9 pranešimai tarptautinėse konferencijose iš jų: 2 – konferencijų medžiagose Thomson ISI Proceedings duomenų bazėje, 7 – recenzuojamose konferencijų medžiagose

    Autonomous real-time object detection and identification

    Get PDF
    Sensor devices are regularly used on unmanned aerial vehicles (UAVs) as reconnaissance and intelligence gathering systems and as support for front line troops on operations. This platform provides a wealth of sensor data and has limited computational power available for processing. The objective of this work is to detect and identify objects in real-time, with a low power footprint so that it can operate on a UAV. An appraisal of current computer vision methods is presented, with reference to their performance and applicability to the objectives. Experimentation with real-time methods of background subtraction and motion estimation was carried out and limitations of each method described. A new, assumption free, data driven method for object detection and identification was developed. The core ideas of the development were based on models that propose that the human vision system analyses edges of objects to detect and separate them and perceives motion separately, a function which has been modelled here by optical flow. The initial development in the temporal domain combined object and motion detection in the analysis process. This approach was found to have limitations. The second iteration used a detection component in the spatial domain that extracts texture patches based on edge contours, their profile, and internal texture structure. Motion perception was performed separately on the texture patches using optical flow. The motion and spatial location of texture patches was used to define physical objects. A clustering method is used on the rich feature set extracted by the detection method to characterise the objects. The results show that the method carries out detection and identification of both moving and static objects, in real-time, irrespective of camera motion
    corecore