4,220 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Regression on fixed-rank positive semidefinite matrices: a Riemannian approach

    Full text link
    The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks

    Online Stochastic Principal Component Analysis

    Get PDF
    This paper studied Principal Component Analysis (PCA) in an online. The problem is posed as a subspace optimization problem and solved using gradient based algorithms. One such algorithm is the Variance-Reduced PCA (VR-PCA). The VR-PCA was designed as an improvement to the classical online PCA algorithm known as the Oja’s method where it only handled one sample at a time. The paper developed Block VR-PCA as an improved version of VR-PCA. Unlike prominent VR-PCA, the Block VR-PCA was designed to handle more than one dimension in subspace optimization at a time and it showed good performance. The Block VR-PCA and Block Oja method were compared experimentally in MATLAB using synthetic and real data sets, their convergence results showed Block VR-PCA method appeared to achieve a minimum steady state error than Block Oja method. Keywords:   Online Stochastic; Principal Component Analysis; Block Variance-Reduced; Block Oj

    Dynamic Algorithms and Asymptotic Theory for Lp-norm Data Analysis

    Get PDF
    The focus of this dissertation is the development of outlier-resistant stochastic algorithms for Principal Component Analysis (PCA) and the derivation of novel asymptotic theory for Lp-norm Principal Component Analysis (Lp-PCA). Modern machine learning and signal processing applications employ sensors that collect large volumes of data measurements that are stored in the form of data matrices, that are often massive and need to be efficiently processed in order to enable machine learning algorithms to perform effective underlying pattern discovery. One such commonly used matrix analysis technique is PCA. Over the past century, PCA has been extensively used in areas such as machine learning, deep learning, pattern recognition, and computer vision, just to name a few. PCA\u27s popularity can be attributed to its intuitive formulation on the L2-norm, availability of an elegant solution via the singular-value-decomposition (SVD), and asymptotic convergence guarantees. However, PCA has been shown to be highly sensitive to faulty measurements (outliers) because of its reliance on the outlier-sensitive L2-norm. Arguably, the most straightforward approach to impart robustness against outliers is to replace the outlier-sensitive L2-norm by the outlier-resistant L1-norm, thus formulating what is known as L1-PCA. Exact and approximate solvers are proposed for L1-PCA in the literature. On the other hand, in this big-data era, the data matrix may be very large and/or the data measurements may arrive in streaming fashion. Traditional L1-PCA algorithms are not suitable in this setting. In order to efficiently process streaming data, while being resistant against outliers, we propose a stochastic L1-PCA algorithm that computes the dominant principal component (PC) with formal convergence guarantees. We further generalize our stochastic L1-PCA algorithm to find multiple components by propose a new PCA framework that maximizes the recently proposed Barron loss. Leveraging Barron loss yields a stochastic algorithm with a tunable robustness parameter that allows the user to control the amount of outlier-resistance required in a given application. We demonstrate the efficacy and robustness of our stochastic algorithms on synthetic and real-world datasets. Our experimental studies include online subspace estimation, classification, video surveillance, and image conditioning, among other things. Last, we focus on the development of asymptotic theory for Lp-PCA. In general, Lp-PCA for p\u3c2 has shown to outperform PCA in the presence of outliers owing to its outlier resistance. However, unlike PCA, Lp-PCA is perceived as a ``robust heuristic\u27\u27 by the research community due to the lack of theoretical asymptotic convergence guarantees. In this work, we strive to shed light on the topic by developing asymptotic theory for Lp-PCA. Specifically, we show that, for a broad class of data distributions, the Lp-PCs span the same subspace as the standard PCs asymptotically and moreover, we prove that the Lp-PCs are specific rotated versions of the PCs. Finally, we demonstrate the asymptotic equivalence of PCA and Lp-PCA with a wide variety of experimental studies

    Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

    Full text link
    Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and Computin
    corecore