245 research outputs found

    Tools for Real-Time Control Systems Co-Design : A Survey

    Get PDF
    This report presents a survey of current simulation tools in the area of integrated control and real-time systems design. Each tool is presented with a quick overview followed by a more detailed section describing comparative aspects of the tool. These aspects describe the context and purpose of the tool (scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool technology (tool architecture, inputs, outputs, modeling content, extensibility and availability). The tools presented in the survey are the following; Jitterbug and TrueTime from the Department of Automatic Control at Lund University, Sweden, AIDA and XILO from the Department of Machine Design at the Royal Institute of Technology, Sweden, Ptolemy II from the Department of Electrical Engineering and Computer Sciences at Berkeley, California, RTSIM from the RETIS Laboratory, Pisa, Italy, and Syndex and Orccad from INRIA, France. The survey also briefly describes some existing commercial tools related to the area of real-time control systems

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Control and Embedded Computing: Survey of Research Directions

    Get PDF
    This paper provides a survey of the role of feedback control in embedded realtimesystems, presented in the context of a new EU/IST Network of Excellence, ARTIST2.The survey highlights recent research efforts and future research directions in the areasof codesign of computer-based control systems, implementation-aware embedded controlsystems, and control of real-time computing systems

    Integrating security into real-time cyber-physical systems

    Get PDF
    Cyber-physical systems (CPS) such as automobiles, power plants, avionics systems, unmanned vehicles, medical devices, manufacturing and home automation systems have distinct cyber and physical components that must work cohesively with each other to ensure correct operation. Many cyber-physical applications have “real-time” constraints, i.e., they must function correctly within predetermined time scales. A failure to protect these systems could result in significant harm to humans, the system or even the environment. While traditionally such systems were isolated from external accesses and used proprietary components and protocols, modern CPS use off-the-shelf components and are increasingly interconnected, often via networks such as the Internet. As a result, they are exposed to additional attack surfaces and have become increasingly vulnerable to cyber attacks. Enhancing security for real-time CPS, however, is not an easy task due to limited resource availability (e.g., processing power, memory, storage, energy) and stringent timing/safety requirements. Security monitoring techniques for cyber-physical platforms (a) must execute with existing real-time tasks, (b) operate without impacting the timing and safety constraints of the control logic and (c) have to be designed and executed in a way that an adversary cannot easily evade it. The objective of my research is to increase security posture of embedded real-time CPS by integrating monitoring/detection techniques that defeat cyber attacks without violating timing/safety constraints of existing tasks. My dissertation work explores the real-time security domain and shows that by employing a combination of multiple scheduling/analysis techniques and interactions between hardware/software-based security extensions, it becomes feasible to integrate security monitoring mechanisms in real-time CPS without compromising timing/safety requirements of existing tasks. In this research, I (a) develop techniques to raise the responsiveness of security monitoring tasks by increasing their frequency of execution, (b) design a hardware-supported framework to prevent falsification of actuation commands — i.e., commands that control the state of the physical system and (c) propose metrics to trade-off security with real-time guarantees. The solutions presented in this dissertation require minimal changes to system components/parameters and thus compatible for legacy systems. My proposed frameworks and results are evaluated through both, simulations and experiments on real off-the-shelf cyber-physical platforms. The development of analysis techniques and design frameworks proposed in this dissertation will inherently make such systems more secure and hence, safer. I believe my dissertation work will bring researchers and system engineers one step closer to understand how to integrate two seemingly diverse yet important fields — real-time CPS and cyber-security — while gaining a better understanding of both areas

    Model for WCET prediction, scheduling and task allocation for emergent agent-behaviours in real-time scenarios

    Get PDF
    [ES]Hasta el momento no se conocen modelos de tiempo real específicamente desarrollados para su uso en sistemas abiertos, como las Organizaciones Virtuales de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis presenta nuevas contribuciones y la novedosa integración de agentes en tiempo real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer modelo específicamente diseñado para su aplicación en OVs con restricciones temporales estrictas. Esta tesis proporciona una nueva perspectiva que combina la apertura y dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto es una aspecto complicado ya que el primer paradigma no es estricto, como el propio término de sistema abierto indica, sin embargo, el segundo paradigma debe cumplir estrictas restricciones. En resumen, el modelo que se presenta permite definir las acciones que una OV debe llevar a cabo con un plazo concreto, considerando los cambios que pueden ocurrir durante la ejecución de un plan particular. Es una planificación de tiempo real en una OV. Otra de las principales contribuciones de esta tesis es un modelo para el cálculo del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo efectivo para calcular el peor escenario cuando un agente desea formar parte de una OV y para ello, debe incluir sus tareas o comportamientos dentro del sistema de tiempo real, es decir, se calcula el WCET de comportamientos emergentes en tiempo de ejecución. También se incluye una planificación local para cada nodo de ejecución basada en el algoritmo FPS y una distribución de tareas entre los nodos disponibles en el sistema. Para ambos modelos se usan modelos matemáticos y estadísticos avanzados para crear un mecanismo adaptable, robusto y eficiente para agentes inteligentes en OVs. El desconocimiento, pese al estudio realizado, de una plataforma para sistemas abiertos que soporte agentes con restricciones de tiempo real y los mecanismos necesarios para el control y la gestión de OVs, es la principal motivación para el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una innovadora plataforma multi-agente que proporciona soporte para la ejecución de agentes en ambientes de tiempo real. Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por tanto al final de la tesis, con este caso de estudio se obtienen los resultados y conclusiones que validan el modelo

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry
    corecore