648 research outputs found

    A lightweight privacy preserving authenticated key agreement protocol for SIP-based VoIP

    Get PDF
    Session Initiation Protocol (SIP) is an essential part of most Voice over Internet Protocol (VoIP) architecture. Although SIP provides attractive features, it is exposed to various security threats, and so an efficient and secure authentication scheme is sought to enhance the security of SIP. Several attempts have been made to address the tradeoff problem between security and efficiency, but designing a successful authenticated key agreement protocol for SIP is still a challenging task from the viewpoint of both performance and security, because performance and security as two critical factors affecting SIP applications always seem contradictory. In this study, we employ biometrics to design a lightweight privacy preserving authentication protocol for SIP based on symmetric encryption, achieving a delicate balance between performance and security. In addition, the proposed authentication protocol can fully protect the privacy of biometric characteristics and data identity, which has not been considered in previous work. The completeness of the proposed protocol is demonstrated by Gong, Needham, and Yahalom (GNY) logic. Performance analysis shows that our proposed protocol increases efficiency significantly in comparison with other related protocols

    Cryptanalysis and improvement of password-authenticated key agreement for session initiation protocol using smart cards

    Get PDF
    Session Initiation Protocol (SIP) is one of the most commonly used protocols for handling sessions for Voice over Internet Protocol (VoIP)-based communications, and the security of SIP is becoming increasingly important. Recently, Zhang et al. proposed a password authenticated key agreement protocol for SIP by using smart cards to protect the VoIP communications between users. Their protocol provided some unique features, such as mutual authentication, no password table needed, and password updating freely. In this study, we performed cryptanalysis of Zhang et al.'s protocol and found that their protocol was vulnerable to the impersonation attack although the protocol could withstand several other attacks. A malicious attacker could compute other users’ privacy keys and then impersonated the users to cheat the SIP server. Furthermore, we proposed an improved password authentication key agreement protocol for SIP, which overcame the weakness of Zhang et al.’s protocol and was more suitable for VoIP communications

    An energy efficient authenticated key agreement protocol for SIP-based green VoIP networks

    Get PDF
    Voice over Internet Protocol (VoIP) is spreading across the market rapidly due to its characteristics such as low cost, flexibility implementation, and versatility of new applications etc. However, the voice packets transmitted over the Internet are not protected in most VoIP environments, and then the user’s information could be easily compromised by various malicious attacks. So an energy-efficient authenticated key agreement protocol for Session Initial Protocol (SIP) should be provided to ensure the confidentiality and integrity of data communications over VoIP networks. To simplify the authentication process, several protocols adopt a verification table to achieve mutual authentication, but the protocols require the SIP server to maintain a large verification table which not only increases energy consumption but also leads to some security issues. Although several attempts have been made to address the intractable problems, designing an energy-efficient authenticated key agreement protocol for SIP-based green VoIP networks is still a challenging task. In this study, we propose an efficient authentication protocol for SIP by using smartcards based on elliptic curve cryptography. With the proposed protocol, the SIP server needs not to store a password or verification table in its database, and so no energy is required for the maintenance of the verification table. Security analysis demonstrates that the proposed protocol can resist various attacks and provides efficient password updating. Furthermore, the experimental results show that the proposed protocol increases efficiency in comparison with other related protocols

    Two-factor remote authentication protocol with user anonymity based on elliptic curve cryptography

    Get PDF
    In order to provide secure remote access control, a robust and efficient authentication protocol should realize mutual authentication and session key agreement between clients and the remote server over public channels. Recently, Chun-Ta Li proposed a password authentication and user anonymity protocol by using smart cards, and they claimed that their protocol has satisfied all criteria required by remote authentication. However, we have found that his protocol cannot provide mutual authentication between clients and the remote server. To realize ‘real’ mutual authentication, we propose a two-factor remote authentication protocol based on elliptic curve cryptography in this paper, which not only satisfies the criteria but also bears low computational cost. Detailed analysis shows our proposed protocol is secure and more suitable for practical application

    개선된 인증과 키 분배 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 수리과학부, 2014. 2. 김명환.Nowadays, anonymity property of user authentication scheme becomes important. From 2003, Park et al., Juang et al., and other researchers proposed a useful, secure and efficient authenticated-key exchange scheme. However, There schemes did not provide the useful methods against the various efficient attacks. They argued that they provided the identity privacy- mutual authentication-half-forward secrecy. But their suggestions have limited solutions. So we have researched the about 30 papers and suggested an improved authentication and key exchange scheme. Then, we show that the proposed scheme is secure against the various attacks methods (linear attack, inverse, dictionary, MTMD attacks etc).Chapter 1 Introduction ........................................................ 6 1.1 Motivation ...............................................................................6 1.2 Organization ............................................................................8 Chapter 2 Secure Authenticated Key Exchange .................. 11 2.1 AKE Security ........................................................................11 2.2 Protocol Attack Types ...........................................................17 Chapter 3Secure Authenticated Key Exchange ................... 19 3.1 The Authentication Key Protocol..........................................19 3.2 General Security-Analysis Discussion..................................26 Chapter 4Authenticated Key Exchange Protocol................ 40 4.1 The Improved AKE ...............................................................41 4.2 An Improved Anonymous AKE Scheme ..............................62 Chapter 5Conclusion ...................................................... 75 Bibliography .................................................................... 77 Abstract ........................................................................... 87Docto

    On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography

    Get PDF
    Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for security sensitive applications like electronic banking, financial transactions and smart grids. With the successful implementation of ECC in security applications (e-passports, e-IDs, embedded systems), it is getting widely commercialized. ECC is simple and faster and is therefore emerging as an attractive alternative for providing security in lightweight device, which contributes to its popularity in the present scenario. In this paper, we have analyzed some of the recent password based authentication and key agreement schemes using ECC for various environments. Furthermore, we have carried out security, functionality and performance comparisons of these schemes and found that they are unable to satisfy their claimed security goals

    Authentic-caller : self-enforcing authentication in a next generation network

    Get PDF
    The Internet of Things (IoT) or the Cyber-Physical System (CPS) is the network of connected devices, things and people which collect and exchange information using the emerging telecommunication networks (4G, 5G IP-based LTE). These emerging telecommunication networks can also be used to transfer critical information between the source and destination, informing the control system about the outage in the electrical grid, or providing information about the emergency at the national express highway. This sensitive information requires authorization and authentication of source and destination involved in the communication. To protect the network from unauthorized access and to provide authentication, the telecommunication operators have to adopt the mechanism for seamless verification and authorization of parties involved in the communication. Currently, the next-generation telecommunication networks use a digest-based authentication mechanism, where the call-processing engine of the telecommunication operator initiates the challenge to the request-initiating client or caller, which is being solved by the client to prove his credentials. However, the digest-based authentication mechanisms are vulnerable to many forms of known attacks e.g., the Man-In-The-Middle (MITM) attack and the password guessing attack. Furthermore, the digest-based systems require extensive processing overheads. Several Public-Key Infrastructure (PKI) based and identity-based schemes have been proposed for the authentication and key agreements. However, these schemes generally require smart-card to hold long-term private keys and authentication credentials. In this paper, we propose a novel self-enforcing authentication protocol for the SIPbased next-generation network based on a low-entropy shared password without relying on any PKI or trusted third party system. The proposed system shows effective resistance against various attacks e.g., MITM, replay attack, password guessing attack, etc. We a..
    corecore