552 research outputs found

    Chaotically Enhanced Meta-Heuristic Algorithms for Optimal Design of Truss Structures with Frequency Constraints

    Get PDF
    The natural frequencies of any structure contain useful information about the dynamic behavior of that structure, and by controlling these frequencies, the destructive effects of dynamic loads, including the resonance phenomenon, can be minimized. Truss optimization by applying dynamic constraints has been widely welcomed by researchers in recent decades and has been presented as a challenging topic. The main reason for this choice is quick access to dynamic information by examining natural frequencies. Also, frequency constraint relations are highly nonlinear and non-convex and have implicit variables, so using mathematical and derivative methods will be very difficult and time consuming. In this regard, the use of meta-heuristic algorithms in truss weight optimization with frequency constraints has good results, but with the introduction of form variables, these algorithms trap at local optima. In this research, by applying chaos map in meta-heuristic algorithms, suitable conditions have been provided to escape from local optima and access to global optimums. These algorithms include Chaotic Cyclical Parthenogenesis Algorithms (CCPA), Chaotic Biogeography-Based Optimization (CBBO), Chaotic Teaching-Learning-Based Optimization (CTLBO) and Chaotic Particle Swarm Optimization (CPSO), respectively. Also, by using different scenarios, a good balance has been achieved between the exploration and exploitation of the algorithms

    進化的及び樹状突起のメカニズムを考慮したソフトコンピューティング技術の提案

    Get PDF
    富山大学・富理工博甲第117号・宋振宇・2017/03/23富山大学201

    樹状突起ニューロン計算および差分進化アルゴリズムに関する研究

    Get PDF
    富山大学・富理工博甲第118号・陳瑋・2017/03/23富山大学201

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Non-Convex Economic Dispatch with Prohibited Operating Zones through Gravitational Search Algorithm

    Get PDF
    This paper presents a new approach to the solution of optimal power generation for economic load dispatch (ELD) using gravitational search algorithm (GSA) when all the generators include valve point effects and some/all of the generators have prohibited operating zones. In this paper a gravitational search algorithm is suggested that deals with equality and inequality constraints in ELD problems. A constraint treatment mechanism is also discussed to accelerate the optimization process. To verify the robustness and superiority of the proposed GSA based approach, a practical sized 40-generators case with valve point effects and prohibited operating zones is considered. The simulation results reveal that the proposed GSA approach ensures convergence within an acceptable execution time and provides highly optimal solution as compared to the results obtained from well established heuristic optimization approaches

    9/7 LIFT Reconfigurable Architecture Implementation for Image Authentication

    Get PDF
    Considering the information system medical images are the most sensitive and critical types of data. Transferring medical images over the internet requires the use of authentication algorithms that are resistant to attacks. Another aspect is confidentiality for secure storage and transfer of medical images. The proposed study presents an embedding technique to improve the security of medical images. As a part of preprocessing that involves removing the high-frequency components, Gaussian filters are used. To get LL band features CDF9/7 wavelet is employed. In a similar way, for the cover image, the LL band features are obtained. In order to get the 1st level of encryption the technique of alpha blending is used. It combines the LL band features of the secret image and cover images whereas LH, HL, and HH bands are applied to Inverse CDF 9/7. The resulting encrypted image along with the key obtained through LH, HL, and HH bands is transferred. The produced key adds an extra layer of protection, and similarly, the receiver does the reverse action to acquire the original secret image. The PSNR acquired from the suggested technique is compared to PSNR obtained from existing techniques to validate the results. Performance is quantified in terms of PSNR. A Spartan 6 FPGA board is used to synthesize the complete architecture in order to compare hardware consumption

    Improved Reptile Search Optimization Algorithm using Chaotic map and Simulated Annealing for Feature Selection in Medical Filed

    Get PDF
    The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (p-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets
    corecore