217 research outputs found

    Improving the robustness of CELP-like speech decoders using late-arrival packets information : application to G.729 standard in VoIP

    Get PDF
    L'utilisation de la voix sur Internet est une nouvelle tendance dans Ie secteur des télécommunications et de la réseautique. La paquetisation des données et de la voix est réalisée en utilisant Ie protocole Internet (IP). Plusieurs codecs existent pour convertir la voix codée en paquets. La voix codée est paquetisée et transmise sur Internet. À la réception, certains paquets sont soit perdus, endommages ou arrivent en retard. Ceci est cause par des contraintes telles que Ie délai («jitter»), la congestion et les erreurs de réseau. Ces contraintes dégradent la qualité de la voix. Puisque la transmission de la voix est en temps réel, Ie récepteur ne peut pas demander la retransmission de paquets perdus ou endommages car ceci va causer plus de délai. Au lieu de cela, des méthodes de récupération des paquets perdus (« concealment ») s'appliquent soit à l'émetteur soit au récepteur pour remplacer les paquets perdus ou endommages. Ce projet vise à implémenter une méthode innovatrice pour améliorer Ie temps de convergence suite a la perte de paquets au récepteur d'une application de Voix sur IP. La méthode a déjà été intégrée dans un codeur large-bande (AMR-WB) et a significativement amélioré la qualité de la voix en présence de <<jitter » dans Ie temps d'arrivée des trames au décodeur. Dans ce projet, la même méthode sera intégrée dans un codeur a bande étroite (ITU-T G.729) qui est largement utilise dans les applications de voix sur IP. Le codeur ITU-T G.729 défini des standards pour coder et décoder la voix a 8 kb/s en utilisant 1'algorithme CS-CELP (Conjugate Stmcture Algebraic Code-Excited Linear Prediction).Abstract: Voice over Internet applications is the new trend in telecommunications and networking industry today. Packetizing data/voice is done using the Internet protocol (IP). Various codecs exist to convert the raw voice data into packets. The coded and packetized speech is transmitted over the Internet. At the receiving end some packets are either lost, damaged or arrive late. This is due to constraints such as network delay (fitter), network congestion and network errors. These constraints degrade the quality of speech. Since voice transmission is in real-time, the receiver can not request the retransmission of lost or damaged packets as this will cause more delay. Instead, concealment methods are applied either at the transmitter side (coder-based) or at the receiver side (decoder-based) to replace these lost or late-arrival packets. This work attempts to implement a novel method for improving the recovery time of concealed speech The method has already been integrated in a wideband speech coder (AMR-WB) and significantly improved the quality of speech in the presence of jitter in the arrival time of speech frames at the decoder. In this work, the same method will be integrated in a narrowband speech coder (ITU-T G.729) that is widely used in VoIP applications. The ITUT G.729 coder defines the standards for coding and decoding speech at 8 kb/s using Conjugate Structure Algebraic Code-Excited Linear Prediction (CS-CELP) Algorithm

    Bilateral Waveform Similarity Overlap-and-Add Based Packet Loss Concealment for Voice over IP

    Get PDF
    This paper invested a bilateral waveform similarity overlap-and-add algorithm for voice packet lost. Since Packet lost will cause the semantic misunderstanding, it has become one of the most essential problems in speech communication. This investment is based on waveform similarity measure using overlap-and-Add algorithm and provides the bilateral information to enhance the speech signal reconstruction. Traditionally, it has been improved that waveform similarity overlap-and-add (WSOLA) technique is an effective algorithm to deal with packet loss concealment (PLC) for real-time time communication. WSOLA algorithm is widely applied to deal with the length adaptation and packet loss concealment of speech signal. Time scale modification of audio signal is one of the most essential research topics in data communication, especially in voice of IP (VoIP). Herein, the proposed the bilateral WSOLA (BWSOLA) that is derived from WSOLA. Instead of only exploitation one direction speech data, the proposed method will reconstruct the lost voice data according to the preceding and cascading data. The related algorithms have been developed to achieve the optimal reconstructing estimation. The experimental results show that the quality of the reconstructed speech signal of the bilateral WSOLA is much better compared to the standard WSOLA and GWSOLA on different packet loss rate and length using the metrics PESQ and MOS. The significant improvement is obtained by bilateral information and proposed method. The proposed bilateral waveform similarity overlap-and-add (BWSOLA) outperforms the traditional approaches especially in the long duration data loss

    Improved voice quality with the combination of transport layer & audio codec for wireless devices

    Get PDF
    Improving voice quality over wireless communication becomes a demanding feature for social media apps like facebook, whatsapp and other communication channels. Voice-over-internet protocol (VoIP) helps us to make quick telephone calls over the internet. It includes various mechanism which are signaling, controlling and transport layer. Over wireless links, packet loss and high transmission delay damage voice quality. Here VoIP quality will be measured by three main elements which are signaling protocol, audio codec and transport layer. To improve the overall voice quality, we need to combine these three elements properly to get the best score. Otherwise perceptual speech quality will not be the right tool to measure the voice quality. Here we will use Mean Opinion Score (MOS) for calculated jitter values and end to end delay. At the end, best combination of audio codec &amp; signaling protocol produced the quality speech

    Multiple description coding technique to improve the robustness of ACELP based coders AMR-WB

    Get PDF
    In this paper, a concealment method based on multiple-description coding (MDC) is presented, to improve speech quality deterioration caused by packet loss for algebraic code-excited linear prediction (ACELP) based coders. We apply to the ITU-T G.722.2 coder, a packet loss concealment (PLC) technique, which uses packetization schemes based on MDC. This latter is used with two new designed modes, which are modes 5 and 6 (18,25 and 19,85 kbps, respectively). We introduce our new second-order Markov chain model with four states in order to simulate network losses for different loss rates. The performance measures, with objective and subjective tests under various packet loss conditions, show a significant improvement of speech quality for ACELP based coders. The wideband perceptual evaluation of speech quality (WB-PESQ), enhanced modified bark spectral distortion (EMBSD), mean opinion score (MOS) tests and MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) for speech extracted from TIMIT database confirm the efficiency of our proposed approach and show a considerable enhancement in speech quality compared to the embedded algorithm in the standard ITU-T G.722.2

    ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS

    Get PDF
    The quality of VoIP communication relies significantly on the network that transports the voice packets because this network does not usually guarantee the available bandwidth, delay, and loss that are critical for real-time voice traffic. The solution proposed here is to manage the voice-over-IP stream dynamically, changing parameters as needed to assure quality. The main objective of this dissertation is to develop an adaptive speech encoding system that can be applied to conventional (telephony-grade) and wideband voice communications. This comprehensive study includes the investigation and development of three key components of the system. First, to manage VoIP quality dynamically, a tool is needed to measure real-time changes in quality. The E-model, which exists for narrowband communication, is extended to a single computational technique that measures speech quality for narrowband and wideband VoIP codecs. This part of the dissertation also develops important theoretical work in the area of wideband telephony. The second system component is a variable speech-encoding algorithm. Although VoIP performance is affected by multiple codecs and network-based factors, only three factors can be managed dynamically: voice payload size, speech compression and jitter buffer management. Using an existing adaptive jitter-buffer algorithm, voice packet-size and compression variation are studied as they affect speech quality under different network conditions. This study explains the relationships among multiple parameters as they affect speech transmission and its resulting quality. Then, based on these two components, the third system component is a novel adaptive-rate control algorithm that establishes the interaction between a VoIP sender and receiver, and manages voice quality in real-time. Simulations demonstrate that the system provides better average voice quality than traditional VoIP

    Micro protocol engineering for unstructured carriers: On the embedding of steganographic control protocols into audio transmissions

    Full text link
    Network steganography conceals the transfer of sensitive information within unobtrusive data in computer networks. So-called micro protocols are communication protocols placed within the payload of a network steganographic transfer. They enrich this transfer with features such as reliability, dynamic overlay routing, or performance optimization --- just to mention a few. We present different design approaches for the embedding of hidden channels with micro protocols in digitized audio signals under consideration of different requirements. On the basis of experimental results, our design approaches are compared, and introduced into a protocol engineering approach for micro protocols.Comment: 20 pages, 7 figures, 4 table

    Covert voice over internet protocol communications with packet loss based on fractal interpolation

    Get PDF
    The last few years have witnessed an explosive growth in the research of information hiding in multimedia objects, but few studies have taken into account packet loss in multimedia networks. As one of the most popular real-time services in the Internet, Voice over Internet Protocol (VoIP) contributes to a large part of network traffic for its advantages of real time, high flow, and low cost. So packet loss is inevitable in multimedia networks and affects the performance of VoIP communications. In this study, a fractal-based VoIP steganographic approach was proposed to realise covert VoIP communications in the presence of packet loss. In the proposed scheme, secret data to be hidden were divided into blocks after being encrypted with the block cipher, and each block of the secret data was then embedded into VoIP streaming packets. The VoIP packets went through a packet loss system based on Gilbert model which simulates a real network situation. And a prediction model based on fractal interpolation was built to decide whether a VoIP packet was suitable for data hiding. The experimental results indicated that the speech quality degradation increased with the escalating packet-loss level. The average variance of speech quality metrics (PESQ score) between the "no-embedding" speech samples and the “with-embedding” stego-speech samples was about 0.717, and the variances narrowed with the increasing packet-loss level. Both the average PESQ scores and the SNR values of stego-speech samples and the data retrieving rates had almost the same varying trends when the packet-loss level increased, indicating that the success rate of the fractal prediction model played an important role in the performance of covert VoIP communications
    • …
    corecore