1,208 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Guitar Chords Classification Using Uncertainty Measurements of Frequency Bins

    Get PDF
    This paper presents a method to perform chord classification from recorded audio. The signal harmonics are obtained by using the Fast Fourier Transform, and timbral information is suppressed by spectral whitening. A multiple fundamental frequency estimation of whitened data is achieved by adding attenuated harmonics by a weighting function. This paper proposes a method that performs feature selection by using a thresholding of the uncertainty of all frequency bins. Those measurements under the threshold are removed from the signal in the frequency domain. This allows a reduction of 95.53% of the signal characteristics, and the other 4.47% of frequency bins are used as enhanced information for the classifier. An Artificial Neural Network was utilized to classify four types of chords: major, minor, major 7th, and minor 7th. Those, played in the twelve musical notes, give a total of 48 different chords. Two reference methods (based on Hidden Markov Models) were compared with the method proposed in this paper by having the same database for the evaluation test. In most of the performed tests, the proposed method achieved a reasonably high performance, with an accuracy of 93%
    • …
    corecore