1,321 research outputs found

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest

    Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing

    Get PDF
    The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field

    Research relative to angular distribution of snow reflectance/snow cover characterization and microwave emission

    Get PDF
    Remote sensing has been applied in recent years to monitoring snow cover properties for applications in hydrologic and energy balance modeling. In addition, snow cover has been recently shown to exert a considerable local influence on weather variables. Of particular importance is the potential of sensors to provide data on the physical properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of upwelling radiance can be used to infer near-surface properties through the calculation of albedo. Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated information, which can be measured through clouds and does not relay on solar illumination.Fundamental studies examining the influence of snow properties on signals from various parts of the electromagnetic spectrum continue in part because of the promise of new remote sensors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the spectrum comprise nearly all available data with high spatial resolution. Current passive microwave sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed landscape features, but they offer timely observations that are independent of cloud cover and solar illumination

    Simulation of multiangular remote sensing products using small satellite formations

    No full text
    To completely capture the multiangular reflectance of an opaque surface, one must estimate the bidirectional reflectance distribution function (BRDF), which seeks to represent variations in surface reflectance as a function of measurement and illumination angles at any time instant. The gap in angular sampling abilities of existing single satellites in Earth observation missions can be complemented by small satellites in formation flight. The formation would have intercalibrated spectrometer payloads making reflectance measurements, at many zenith and azimuthal angles simultaneously. We use a systems engineering tool coupled with a science evaluation tool to demonstrate the performance impact and mission feasibility. Formation designs are generated and compared to each other and multisensor single spacecraft, in terms of estimation error of BRDF and its dependent products such as albedo, light use efficiency (LUE), and normalized difference vegetation index (NDVI). Performance is benchmarked with respect to data from previous airborne campaigns (NASA's Cloud Absorption Radiometer), and tower measurements (AMSPEC II), and assuming known BRDF models. Simulations show that a formation of six small satellites produces lesser average error (21.82%) than larger single spacecraft (23.2%), purely in terms of angular sampling benefits. The average monolithic albedo error of 3.6% is outperformed by a formation of three satellites (1.86%), when arranged optimally and by a formation of seven to eight satellites when arranged in any way. An eight-satellite formation reduces albedo errors to 0.67% and LUE errors from 89.77% (monolithic) to 78.69%. The average NDVI for an eight satellite, nominally maintained formation is better than the monolithic 0.038

    Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments

    Get PDF
    Research involving anisotropic-reflectance correction (ARC) of multispectral imagery to account for topographic effects has been ongoing for approximately 40 years. A large body of research has focused on evaluating empirical ARC methods, resulting in inconsistent results. Consequently, our research objective was to evaluate commonly used ARC methods using first-order radiation-transfer modeling to simulate ASTER multispectral imagery over Nanga Parbat, Himalaya. Specifically, we accounted for orbital dynamics, atmospheric absorption and scattering, direct- and diffuse-skylight irradiance, land cover structure, and surface biophysical variations to evaluate their effectiveness in reducing multi-scale topographic effects. Our results clearly reveal that the empirical methods we evaluated could not reasonably account for multi-scale topographic effects at Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical properties were not preserved in the topographically-corrected multispectral imagery. The CCOR and SCS+C methods were able to remove topographic effects, given the Lambertian assumption, although atmospheric correction was required, and we did not account for other primary and secondary topographic effects that are thought to significantly influence spectral variation in imagery acquired over mountains. Evaluation of structural-similarity index images revealed spatially variable results that are wavelength dependent. Collectively, our simulation and evaluation procedures strongly suggest that empirical ARC methods have significant limitations for addressing anisotropic reflectance caused by multi-scale topographic effects. Results indicate that atmospheric correction is essential, and most methods failed to adequately produce the appropriate magnitude and spatial variation of surface reflectance in corrected imagery. Results were also wavelength dependent, as topographic effects influence radiation-transfer components differently in different regions of the electromagnetic spectrum. Our results explain inconsistencies described in the literature, and indicate that numerical modeling efforts are required to better account for multi-scale topographic effects in various radiation-transfer components.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Benchmarking clear-sky reflectances

    Get PDF
    Accurate calculations of shortwave reflectances in clear-sky aerosol-laden atmospheres are necessary for various applications in atmospheric sciences. However, computational cost becomes increasingly important for some applications such as data assimilation of top-of-atmosphere reflectances in models of atmospheric composition. This study aims to provide a benchmark that can help in assessing these two requirements in combination. We describe a protocol and input data for 44 080 cases involving various solar and viewing geometries, four different surfaces (one oceanic bidirectional reflectance function and three albedo values for a Lambertian surface), eight aerosol optical depths, five wavelengths, and four aerosol types. We first consider two models relying on the discrete ordinate method: VLIDORT (in vector and scalar configurations) and DISORT (scalar configuration only). We use VLIDORT in its vector configuration as a reference model and quantify the loss of accuracy due to (i) neglecting the effect of polarization in DISORT and VLIDORT (scalar) models and (ii) decreasing the number of streams in DISORT. We further test two other models: the 6SV2 model, relying on the successive orders of scattering method, and Forward-Lobe Two-Stream Radiance Model (FLOTSAM), a new model under development by two of the authors. Typical mean fractional errors of 2.8 % and 2.4 % for 6SV2 and FLOTSAM are found, respectively. Computational cost depends on the input parameters but also on the code implementation and application as some models solve the radiative transfer equations for a range of geometries while others do not. All necessary input and output data are provided as a Supplement as a potential resource for interested developers and users of radiative transfer models

    Improved estimation of surface biophysical parameters through inversion of linear BRDF models

    Get PDF

    Integration of remotely sensed data with stand-scale vegetation models

    Get PDF

    High Performance Computing Applications in Remote Sensing Studies for Land Cover Dynamics

    Get PDF
    Global and regional land cover studies require the ability to apply complex models on selected subsets of large amounts of multi-sensor and multi-temporal data sets that have been derived from raw instrument measurements using widely accepted pre-processing algorithms. The computational and storage requirements of most such studies far exceed what is possible on a single workstation environment. We have been pursuing a new approach that couples scalable and open distributed heterogeneous hardware with the development of high performance software for processing, indexing, and organizing remotely sensed data. Hierarchical data management tools are used to ingest raw data, create metadata, and organize the archived data so as to automatically achieve computational load balancing among the available nodes and minimize I/O overheads. We illustrate our approach with four specific examples. The first is the development of the first fast operational scheme for the atmospheric correction of Landsat TM scenes, while the second example focuses on image segmentation using a novel hierarchical connected components algorithm. Retrieval of global BRDF (Bidirectional Reflectance Distribution Function) in the red and near infrared wavelengths using four years (1983 to 1986) of Pathfinder AVHRR Land (PAL) data set is the focus of our third example. The fourth example is the development of a hierarchical data organization scheme that allows on-demand processing and retrieval of regional and global AVHRR data sets. Our results show that substantial improvements in computational times can be achieved by using the high performance computing technology
    corecore