15 research outputs found

    Search and restore: a study of cooperative multi-robot systems

    Get PDF
    Swarm intelligence is the study of natural biological systems with the ability to transform simple local interactions into complex global behaviours. Swarm robotics takes these principles and applies them to multi-robot systems with the aim of achieving the same level of complex behaviour which can result in more robust, scalable and flexible robotic solutions than singular robot systems. This research concerns how cooperative multi-robot systems can be utilised to solve real world challenges and outperform existing techniques. The majority of this research is focused around an emergency ship hull repair scenario where a ship has taken damage and sea water is flowing into the hull, decreasing the stability of the ship. A bespoke team of simulated robots using novel algorithms enable the robots to perform a coordinated ship hull inspection, allowing the robots to locate the damage faster than a similarly sized uncoordinated team of robots. Following this investigation, a method is presented by which the same team of robots can use self-assembly to form a structure, using their own bodies as material, to cover and repair the hole in the ship hull, halting the ingress of sea water. The results from a collaborative nature-inspired scenario are also presented in which a swarm of simple robots are tasked with foraging within an initially unexplored bounded arena. Many of the behaviours implemented in swarm robotics are inspired by biological swarms including their goals such as optimal distribution within environments. In this scenario, there are multiple items of varying quality which can be collected from different sources in the area to be returned to a central depot. The aim of this study is to imbue the robot swarm with a behaviour that will allow them to achieve the most optimal foraging strategy similar to those observed in more complex biological systems such as ants. The author’s main contribution to this study is the implementation of an obstacle avoidance behaviour which allows the swarm of robots to behave more similarly to systems of higher complexity

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Distributed navigation of multi-robot systems for sensing coverage

    Full text link
    A team of coordinating mobile robots equipped with operation specific sensors can perform different coverage tasks. If the required number of robots in the team is very large then a centralized control system becomes a complex strategy. There are also some areas where centralized communication turns into an issue. So, a team of mobile robots for coverage tasks should have the ability of decentralized or distributed decision making. This thesis investigates decentralized control of mobile robots specifically for coverage problems. A decentralized control strategy is ideally based on local information and it can offer flexibility in case there is an increment or decrement in the number of mobile robots. We perform a broad survey of the existing literature for coverage control problems. There are different approaches associated with decentralized control strategy for coverage control problems. We perform a comparative review of these approaches and use the approach based on simple local coordination rules. These locally computed nearest neighbour rules are used to develop decentralized control algorithms for coverage control problems. We investigate this extensively used nearest neighbour rule-based approach for developing coverage control algorithms. In this approach, a mobile robot gives an equal importance to every neighbour robot coming under its communication range. We develop our control approach by making some of the mobile robots playing a more influential role than other members of the team. We develop the control algorithm based on nearest neighbour rules with weighted average functions. The approach based on this control strategy becomes efficient in terms of achieving a consensus on control inputs, say heading angle, velocity, etc. The decentralized control of mobile robots can also exhibit a cyclic behaviour under some physical constraints like a quantized orientation of the mobile robot. We further investigate the cyclic behaviour appearing due to the quantized control of mobile robots under some conditions. Our nearest neighbour rule-based approach offers a biased strategy in case of cyclic behaviour appearing in the team of mobile robots. We consider a clustering technique inside the team of mobile robots. Our decentralized control strategy calculates the similarity measure among the neighbours of a mobile robot. The team of mobile robots with the similarity measure based approach becomes efficient in achieving a fast consensus like on heading angle or velocity. We perform a rigorous mathematical analysis of our developed approach. We also develop a condition based on relaxed criteria for achieving consensus on velocity or heading angle of the mobile robots. Our validation approach is based on mathematical arguments and extensive computer simulations

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    corecore