5,381 research outputs found

    Learned versus Hand-Designed Feature Representations for 3d Agglomeration

    Full text link
    For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains a strong reliance on hand-designed feature descriptors. In this paper, we evaluate a large set of hand-designed 3d feature descriptors alongside features learned from the raw data using both end-to-end and unsupervised learning techniques, in the context of agglomeration of 3d neuron fragments. By combining unsupervised learning techniques with a novel dynamic pooling scheme, we show how pure learning-based methods are for the first time competitive with hand-designed 3d shape descriptors. We investigate data augmentation strategies for dramatically increasing the size of the training set, and show how combining both learned and hand-designed features leads to the highest accuracy

    A new framework for sign language alphabet hand posture recognition using geometrical features through artificial neural network (part 1)

    Get PDF
    Hand pose tracking is essential in sign languages. An automatic recognition of performed hand signs facilitates a number of applications, especially for people with speech impairment to communication with normal people. This framework which is called ASLNN proposes a new hand posture recognition technique for the American sign language alphabet based on the neural network which works on the geometrical feature extraction of hands. A user’s hand is captured by a three-dimensional depth-based sensor camera; consequently, the hand is segmented according to the depth analysis features. The proposed system is called depth-based geometrical sign language recognition as named DGSLR. The DGSLR adopted in easier hand segmentation approach, which is further used in segmentation applications. The proposed geometrical feature extraction framework improves the accuracy of recognition due to unchangeable features against hand orientation compared to discrete cosine transform and moment invariant. The findings of the iterations demonstrate the combination of the extracted features resulted to improved accuracy rates. Then, an artificial neural network is used to drive desired outcomes. ASLNN is proficient to hand posture recognition and provides accuracy up to 96.78% which will be discussed on the additional paper of this authors in this journal

    Minimum Density Hyperplanes

    Get PDF
    Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is central to many statistical and machine learning approaches to the classification of unlabelled data. We propose a novel hyperplane classifier for clustering and semi-supervised classification which is motivated by this objective. The proposed minimum density hyperplane minimises the integral of the empirical probability density function along it, thereby avoiding intersection with high density clusters. We show that the minimum density and the maximum margin hyperplanes are asymptotically equivalent, thus linking this approach to maximum margin clustering and semi-supervised support vector classifiers. We propose a projection pursuit formulation of the associated optimisation problem which allows us to find minimum density hyperplanes efficiently in practice, and evaluate its performance on a range of benchmark datasets. The proposed approach is found to be very competitive with state of the art methods for clustering and semi-supervised classification

    Leaf Categorization Methods for Plant Identification

    Get PDF
    In most of classic plant identification methods a dichotomous or multi-access key is used to compare characteristics of leaves. Some questions about if the analyzed leaves are lobed, unlobed, simple or compound need to be answered to identify plants successfully. However, very little attention has been paid to make an automatic distinction of leaves using such features. In this paper we first explore if incorporating prior knowledge about leaves (categorizing between lobed simple leaves, and the unlobed simple ones) has an effect on the performance of six classification methods. According to the results of experiments with more than 1,900 images of leaves from Flavia data set, we found that it is statically significant the relationship between such categorization and the improvement of the performances of the classifiers tested. Therefore, we propose two novel methods to automatically differentiate between lobed simple leaves, and the unlobed simple ones. The proposals are invariant to rotation, and achieve correct prediction rates greater than 98%
    • 

    corecore