22,788 research outputs found

    Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from ten healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs

    Person re-identification by robust canonical correlation analysis

    Get PDF
    Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods

    On Measure Transformed Canonical Correlation Analysis

    Full text link
    In this paper linear canonical correlation analysis (LCCA) is generalized by applying a structured transform to the joint probability distribution of the considered pair of random vectors, i.e., a transformation of the joint probability measure defined on their joint observation space. This framework, called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the data after transformation of the joint probability measure. We show that judicious choice of the transform leads to a modified canonical correlation analysis, which, in contrast to LCCA, is capable of detecting non-linear relationships between the considered pair of random vectors. Unlike kernel canonical correlation analysis, where the transformation is applied to the random vectors, in MTCCA the transformation is applied to their joint probability distribution. This results in performance advantages and reduced implementation complexity. The proposed approach is illustrated for graphical model selection in simulated data having non-linear dependencies, and for measuring long-term associations between companies traded in the NASDAQ and NYSE stock markets

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    A Comparison of Relaxations of Multiset Cannonical Correlation Analysis and Applications

    Full text link
    Canonical correlation analysis is a statistical technique that is used to find relations between two sets of variables. An important extension in pattern analysis is to consider more than two sets of variables. This problem can be expressed as a quadratically constrained quadratic program (QCQP), commonly referred to Multi-set Canonical Correlation Analysis (MCCA). This is a non-convex problem and so greedy algorithms converge to local optima without any guarantees on global optimality. In this paper, we show that despite being highly structured, finding the optimal solution is NP-Hard. This motivates our relaxation of the QCQP to a semidefinite program (SDP). The SDP is convex, can be solved reasonably efficiently and comes with both absolute and output-sensitive approximation quality. In addition to theoretical guarantees, we do an extensive comparison of the QCQP method and the SDP relaxation on a variety of synthetic and real world data. Finally, we present two useful extensions: we incorporate kernel methods and computing multiple sets of canonical vectors
    • …
    corecore