1,374 research outputs found

    Adaptive blind equalization using weighted cumulant slices

    Get PDF
    Many linear methods have been proposed in the literature to blindly estimate the ARMA parameters of a time series using HOS. Nevertheless, they are mainly off-line and not much has been done in the adaptive case. The method proposed in this contribution is the adaptive version of the w-slice method. The recursion is based on the inversion lemma when attempting the solution of an undetermined matrix equation. The system impulse response can be recovered regardless of the ARMA or MA character of the system. The number of operations depends on the square of the system order and it is considerably reduced with respect to previous approaches. Application to channel deconvolution is shown.Peer ReviewedPostprint (published version

    New receiver for joint blind equalization and carrier phase recovery of QAM signals

    No full text
    Published versio

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201
    • …
    corecore